46 research outputs found
Transition effect of air shower particles in plastic scintillators
The transition effect of air shower particles in the plastic scintillators near the core was measured by scintillators of various thickness. The air showers selected for the measurement were of 10,000. Results obtained are as follows: (1) the multiplication of shower particles in the scintillators is less than 20% for that of 50 mm thickness; (2) dependence of the transition effect on age parameter is not recognized within the experimental errors
Character of energy flow in air shower core
Energy per charged particle near the core of air showers was measured by 9 energy flow detectors, which were the combination of Cerenkov counters and scintillators. Energy per particle of each detector was normalized to energy at 2m from the core. The following results were obtained as to the energy flow: (1) integral frequency distribution of mean energy per particle (averaged over 9 detectors) is composed of two groups separated distinctly; and (2) showers contained in one group show an anisotropy of arrival direction
Lateral distribution of electrons of air showers
The lateral distribution of electrons (LDE) of the air showers of size 10 to the 5th power to 10 to the 6th power was studied within one MU. It was found that the LDE of the air showers observed is well represented by NKG function except for vicinity of the core. It was also found that LDE measured by thin scintillators does not differ from that measured by thick ones of 50mm thickness
Influence of hadronic interaction models and the cosmic ray spectrum on the high energy atmospheric muon and neutrino flux
The recent observations of muon charge ratio up to about 10 TeV and of
atmospheric neutrinos up to energies of about 400 TeV has triggered a renewed
interest into the high-energy interaction models and cosmic ray primary
composition. A reviewed calculation of lepton spectra produced in cosmic-ray
induced extensive air showers is carried out with a primary cosmic-ray spectrum
that fits the latest direct measurements below the knee. In order to achieve
this, we used a full Monte Carlo method to derive the inclusive differential
spectra (yields) of muons, muon neutrinos and electron neutrinos at the surface
for energies between 80 GeV and hundreds of PeV. The air shower simulator {\sc
corsika} 6.990 was used for showering and propagation of the secondary
particles through the atmosphere, employing the established high-energy
hadronic interaction models {\sc sibyll} 2.1, {\sc qgsjet-01} and {\sc
qgsjet-ii 03}. We show that the performance of the interaction models allows
makes it possible to predict the spectra within experimental uncertainties,
while {\sc sibyll} generally yields a higher flux at the surface than the
qgsjet models. The calculation of the flavor and charge ratios has lead to
inconsistent results, mainly influenced by the different representations of the
K/ ratio within the models. Furthermore, we could quantify systematic
uncertainties of atmospheric muon- and neutrino fluxes, associated to the
models of the primary cosmic-ray spectrum and the interaction models. For most
recent parametrizations of the cosmic-ray primary spectrum, atmospheric muons
can be determined with an uncertainty smaller than % of the
average flux. Uncertainties of the muon- and electron neutrino fluxes can be
calculated within an average error of % and %,
respectively.Comment: 16 pages, 10 figures, version 2 includes analytic approximatio
Cosmic-Ray Proton and Helium Spectra from the First CREAM Flight
Cosmic-ray proton and helium spectra have been measured with the
balloon-borne Cosmic Ray Energetics And Mass experiment flown for 42 days in
Antarctica in the 2004-2005 austral summer season. High-energy cosmic-ray data
were collected at an average altitude of ~38.5 km with an average atmospheric
overburden of ~3.9 g cm. Individual elements are clearly separated with
a charge resolution of ~0.15 e (in charge units) and ~0.2 e for protons and
helium nuclei, respectively. The measured spectra at the top of the atmosphere
are represented by power laws with a spectral index of -2.66 0.02 for
protons from 2.5 TeV to 250 TeV and -2.58 0.02 for helium nuclei from 630
GeV/nucleon to 63 TeV/nucleon. They are harder than previous measurements at a
few tens of GeV/nucleon. The helium flux is higher than that expected from the
extrapolation of the power law fitted to the lower-energy data. The relative
abundance of protons to helium nuclei is 9.1 0.5 for the range from 2.5
TeV/nucleon to 63 TeV/nucleon. This ratio is considerably smaller than the
previous measurements at a few tens of GeV/nucleon.Comment: 20 pages, 4 figure
The Origin of Galactic Cosmic Rays
Motivated by recent measurements of the major components of the cosmic
radiation around 10 TeV/nucleon and above, we discuss the phenomenology of a
model in which there are two distinct kinds of cosmic ray accelerators in the
galaxy. Comparison of the spectra of hydrogen and helium up to 100 TeV per
nucleon suggests that these two elements do not have the same spectrum of
magnetic rigidity over this entire region and that these two dominant elements
therefore receive contributions from different sources.Comment: To be published in Physical Review D, 13 pages, with 3 figures,
uuencode
Comparison of 3-Dimensional and 1-Dimensional Schemes in the calculation of Atmospheric Neutrinos
A 3-dimensional calculation of atmospheric neutrinos flux is presented, and
the results are compared with those of a 1-dimensional one. In this study,
interaction and propagation of particles is treated in a 3-dimensional way
including the curvature of charged particles due to the geomagnetic field,
which is assumed to be a dipole field. The purpose of this paper is limited to
the comparison of calculation schemes. The updated flux value with new
interaction model and primary flux model will be reported in a separate paper.
Except for nearly horizontal directions, the flux is very similar to the
result of 1 dimensional calculations. However, for near-horizontal directions
an enhancement of the neutrino flux is seen even at energies as high as 1 GeV.
The production height of neutrinos is lower than the prediction by
1-dimensional calculation for near-horizontal directions, and is a little
higher for near-vertical directions. However, the difference is not evident
except for near-horizontal directions.Comment: 22 pages, 15figure
Primary proton spectrum between 200 TeV and 1000 TeV observed with the Tibet burst detector and air shower array
Since 1996, a hybrid experiment consisting of the emulsion chamber and burst
detector array and the Tibet-II air-shower array has been operated at
Yangbajing (4300 m above sea level, 606 g/cm^2) in Tibet. This experiment can
detect air-shower cores, called as burst events, accompanied by air showers in
excess of about 100 TeV. We observed about 4300 burst events accompanied by air
showers during 690 days of operation and selected 820 proton-induced events
with its primary energy above 200 TeV using a neural network method. Using this
data set, we obtained the energy spectrum of primary protons in the energy
range from 200 to 1000 TeV. The differential energy spectrum obtained in this
energy region can be fitted by a power law with the index of -2.97 0.06,
which is steeper than that obtained by direct measurements at lower energies.
We also obtained the energy spectrum of helium nuclei at particle energies
around 1000 TeV.Comment: 25 pages, 22 figures, Accepted for publication in Phys. Rev.
The energy spectrum of all-particle cosmic rays around the knee region observed with the Tibet-III air-shower array
We have already reported the first result on the all-particle spectrum around
the knee region based on data from 2000 November to 2001 October observed by
the Tibet-III air-shower array. In this paper, we present an updated result
using data set collected in the period from 2000 November through 2004 October
in a wide range over 3 decades between eV and eV, in which
the position of the knee is clearly seen at around 4 PeV. The spectral index is
-2.68 0.02(stat.) below 1PeV, while it is -3.12 0.01(stat.) above 4
PeV in the case of QGSJET+HD model, and various systematic errors are under
study now.Comment: 12 pages, 7 figures, accepted by Advances in space researc
A study on the sharp knee and fine structures of cosmic ray spectra
The paper investigates the overall and detailed features of cosmic ray (CR)
spectra in the knee region using the scenario of nuclei-photon interactions
around the acceleration sources. Young supernova remnants can be the physical
realities of such kind of CR acceleration sites. The results show that the
model can well explain the following problems simultaneously with one set of
source parameters: the knee of CR spectra and the sharpness of the knee, the
detailed irregular structures of CR spectra, the so-called "component B" of
Galactic CRs, and the electron/positron excesses reported by recent
observations. The coherent explanation serves as evidence that at least a
portion of CRs might be accelerated at the sources similar to young supernova
remnants, and one set of source parameters indicates that this portion mainly
comes from standard sources or from a single source.Comment: 13 pages, 4 figures, accepted for publication in SCIENCE CHINA
Physics, Mechanics & Astronomy