112 research outputs found

    Interannual differences in the regressions of the polar caps of Mars

    Get PDF
    Analyses of the behavior of the Martian polar caps in the recent spacecraft and ground based observations seem to reveal the existence of year to year variations on their regressions. In order to investigate the interannual differences in the regressions of the polar caps, the earlier data by Fischbacher et al., were reexamined, which were based on the measurements of the large number of high quality photographic plates and films collected from 1905 to 1965 at the Lowell Observatory. The results are reported and discussed

    Felling by a Five-Legged Walking Machine

    Get PDF
    A 1/11 scale model of a walking machine with five legs was constructed, and its operation as a feller-buncher investigated. As slopes steepen, the machine when positioned straight up the slope becomes more efficient than when positioned parallel to the contour lines, because the downward operational range of the machine decreases with increased slopes. In the experiments, the ground pressure of the legs on the end opposite the boom was nearly zero when the boom holding felled trees was positioned at the side of the body and extended farthest from the body. However, further investigations (including such factors as ground disturbance, the operation of the machine, the degrees and the length of slope, and the fuel consumption) of felling operations are needed. Feller-bunching tends to be less efficient as tree density increases assuming that felling time per tree remains constant as tree diameter changes. To obtain greater productivity with the machine as a feller-buncher, it is essential to achieve faster walking-time and shorter felling-time per tree

    Outflows from the high-mass protostars NGC 7538 IRS1/2 observed with bispectrum speckle interferometry -- Signatures of flow precession

    Get PDF
    NGC 7538 IRS1 is a high-mass (approx. 30 M_sun) protostar with a CO outflow, an associated UCHII region, and a linear methanol maser structure, which might trace a Keplerian-rotating circumstellar disk. The directions of the various associated axes are misaligned with each other. We investigate the near-infrared morphology of the source to clarify the relations among the various axes. K'-band bispectrum speckle interferometry was performed at two 6-meter-class telescopes -- the BTA 6m telescope and the 6.5m MMT. Complementary IRAC images from the Spitzer Space Telescope Archive were used to relate the structures detected with the outflow at larger scales. High-dynamic range images show fan-shaped outflow structure in which we detect 18 stars and several blobs of diffuse emission. We interpret the misalignment of various outflow axes in the context of a disk precession model, including numerical hydrodynamic simulations of the molecular emission. The precession period is approx. 280 years and its half-opening angle is 40 degrees. A possible triggering mechanism is non-coplanar tidal interaction of an (undiscovered) close companion with the circumbinary protostellar disk. Our observations resolve the nearby massive protostar NGC 7538 IRS2 as a close binary with separation of 195 mas. We find indications for shock interaction between the outflow activities in IRS1 and IRS2. Indications of outflow precession have been discovered to date in a number of massive protostars, all with large precession angles 20--45 degrees. This might explain the difference between the outflow widths in low- and high-mass stars and add support to a common collimation mechanism.Comment: 20 pages; 8 figures; Accepted by A&A on April 10, 2006; Image quality reduced due to astro-ph file size limitations; Please download a version with high-quality images from http://www.mpifr-bonn.mpg.de/staff/tpreibis/ngc7538.pd

    Time-dependent Stochastic Modeling of Solar Active Region Energy

    Full text link
    A time-dependent model for the energy of a flaring solar active region is presented based on a stochastic jump-transition model (Wheatland and Glukhov 1998; Wheatland 2008; Wheatland 2009). The magnetic free energy of the model active region varies in time due to a prescribed (deterministic) rate of energy input and prescribed (random) flare jumps downwards in energy. The model has been shown to reproduce observed flare statistics, for specific time-independent choices for the energy input and flare transition rates. However, many solar active regions exhibit time variation in flare productivity, as exemplified by NOAA active region AR 11029 (Wheatland 2010). In this case a time-dependent model is needed. Time variation is incorporated for two cases: 1. a step change in the rates of flare jumps; and 2. a step change in the rate of energy supply to the system. Analytic arguments are presented describing the qualitative behavior of the system in the two cases. In each case the system adjusts by shifting to a new stationary state over a relaxation time which is estimated analytically. The new model retains flare-like event statistics. In each case the frequency-energy distribution is a power law for flare energies less than a time-dependent rollover set by the largest energy the system is likely to attain at a given time. For Case 1, the model exhibits a double exponential waiting-time distribution, corresponding to flaring at a constant mean rate during two intervals (before and after the step change), if the average energy of the system is large. For Case 2 the waiting-time distribution is a simple exponential, again provided the average energy of the system is large. Monte Carlo simulations of Case~1 are presented which confirm the analytic estimates. The simulation results provide a qualitative model for observed flare statistics in active region AR 11029.Comment: 25 pages, 9 figure

    Sub-terahertz, microwaves and high energy emissions during the December 6, 2006 flare, at 18:40 UT

    Full text link
    The presence of a solar burst spectral component with flux density increasing with frequency in the sub-terahertz range, spectrally separated from the well-known microwave spectral component, bring new possibilities to explore the flaring physical processes, both observational and theoretical. The solar event of 6 December 2006, starting at about 18:30 UT, exhibited a particularly well-defined double spectral structure, with the sub-THz spectral component detected at 212 and 405 GHz by SST and microwaves (1-18 GHz) observed by the Owens Valley Solar Array (OVSA). Emissions obtained by instruments in satellites are discussed with emphasis to ultra-violet (UV) obtained by the Transition Region And Coronal Explorer (TRACE), soft X-rays from the Geostationary Operational Environmental Satellites (GOES) and X- and gamma-rays from the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The sub-THz impulsive component had its closer temporal counterpart only in the higher energy X- and gamma-rays ranges. The spatial positions of the centers of emission at 212 GHz for the first flux enhancement were clearly displaced by more than one arc-minute from positions at the following phases. The observed sub-THz fluxes and burst source plasma parameters were found difficult to be reconciled to a purely thermal emission component. We discuss possible mechanisms to explain the double spectral components at microwaves and in the THz ranges.Comment: Accepted version for publication in Solar Physic

    Intersubject and intrasubject variability of potential plasma and urine metabolite and protein biomarkers in healthy human volunteers

    Get PDF
    A limited understanding of intersubject and intrasubject variability hampers effective biomarker translation from in vitro/in vivo studies to clinical trials and clinical decision support. Specifically, variability of biomolecule concentration can play an important role in interpretation, power analysis, and sampling time designation. In the present study, a wide range of 749 plasma metabolites, 62 urine biogenic amines, and 1,263 plasma proteins were analyzed in 10 healthy male volunteers measured repeatedly during 12 hours under tightly controlled conditions. Three variability components in relative concentration data are determined using linear mixed models: between (intersubject), time (intrasubject), and noise (intrasubject). Biomolecules such as 3-carboxy-4-methyl-5-propyl-2-furanpropanoate, platelet-derived growth factor C, and cathepsin D with low noise potentially detect changing conditions within a person. If also the between component is low, biomolecules can easier differentiate conditions between persons, for example cathepsin D, CD27 antigen, and prolylglycine. Variability over time does not necessarily inhibit translatability, but requires choosing sampling times carefully.Analytical BioScience

    A near-infrared study of the NGC 7538 star forming region

    Get PDF
    We present sub-arcsecond (FWHM ~ 0".7), NIR JHKs-band images and a high sensitivity radio continuum image at 1280 MHz, using SIRIUS on UH 88-inch telescope and GMRT. The NIR survey covers an area of ~ 24 arcmin^2 with 10-sigma limiting mags of ~ 19.5, 18.4, and 17.3 in J, H, and Ks-band, respectively. Our NIR images are deeper than any JHK surveys to date for the larger area of NGC 7538 star forming region. We construct JHK CC and J-H/J and H-K/K CM diagrams to identify YSOs and to estimate their masses. Based on these CC and CM diagrams, we identified a rich population of YSOs (Class I and Class II), associated with the NGC 7538 region. A large number of red sources (H-K > 2) have also been detected around NGC 7538. We argue that these red stars are most probably PMS stars with intrinsic color excesses. Most of YSOs in NGC 7538 are arranged from the N-W toward S-E regions, forming a sequence in age: the diffuse H II region (N-W, oldest: where most of the Class II and Class I sources are detected); the compact IR core (center); and the regions with the extensive IR reflection nebula and a cluster of red young stars (S-E and S). We find that the slope of the KLF of NGC 7538 is lower than the typical values reported for the young embedded clusters, although equally low values have also been reported in the W3 Main star forming region. From the slope of the KLF and the analysis by Megeath et al. (1996), we infer that the embedded stellar population is comprised of YSOs with an age of ~ 1 Myr. Based on the comparison between models of PMS stars with the observed CM diagram we find that the stellar population in NGC 7538 is primarily composed of low mass PMS stars similar to those observed in the W3 Main star forming region.Comment: 36 pages, 13 figures in JPEG format. Accepted for the publication in ApJ. Report is also available at : http://www.tifr.res.in/~ojha/NGC7538.htm

    Comparative functional analysis of aquaporins/glyceroporins in mammals and anurans

    Get PDF
    Maintenance of fluid homeostasis is critical to establishing and maintaining normal physiology. The landmark discovery of membrane water channels (aquaporins; AQPs) ushered in a new area in osmoregulatory biology that has drawn from and contributed to diverse branches of biology, from molecular biology and genomics to systems biology and evolution, and from microbial and plant biology to animal and translational physiology. As a result, the study of AQPs provides a unique and integrated backdrop for exploring the relationships between genes and genome systems, the regulation of gene expression, and the physiologic consequences of genetic variation. The wide species distribution of AQP family members and the evolutionary conservation of the family indicate that the control of membrane water flux is a critical biological process. AQP function and regulation is proving to be central to many of the pathways involved in individual physiologic systems in both mammals and anurans. In mammals, AQPs are essential to normal secretory and absorptive functions of the eye, lung, salivary gland, sweat glands, gastrointestinal tract, and kidney. In urinary, respiratory, and gastrointestinal systems, AQPs are required for proper urine concentration, fluid reabsorption, and glandular secretions. In anurans, AQPs are important in mediating physiologic responses to changes in the external environment, including those that occur during metamorphosis and adaptation from an aquatic to terrestrial environment and thermal acclimation in anticipation of freezing. Therefore, an understanding of AQP function and regulation is an important aspect of an integrated approach to basic biological research

    Microflares and the Statistics of X-ray Flares

    Full text link
    This review surveys the statistics of solar X-ray flares, emphasising the new views that RHESSI has given us of the weaker events (the microflares). The new data reveal that these microflares strongly resemble more energetic events in most respects; they occur solely within active regions and exhibit high-temperature/nonthermal emissions in approximately the same proportion as major events. We discuss the distributions of flare parameters (e.g., peak flux) and how these parameters correlate, for instance via the Neupert effect. We also highlight the systematic biases involved in intercomparing data representing many decades of event magnitude. The intermittency of the flare/microflare occurrence, both in space and in time, argues that these discrete events do not explain general coronal heating, either in active regions or in the quiet Sun.Comment: To be published in Space Science Reviews (2011
    corecore