656 research outputs found
Molecular markers associated with a new source of resistance to the cassava mosaic disease
The predominant source of resistance to the cassava mosaic disease (CMD) is known to be polygenic requiring evaluation in multiple environments to characterise resistant genotypes, which makes the detection of genes for resistance using segregation analysis inefficient. Recently, some landraces have been identified which exhibit high levels of resistance to CMD. In this study, molecular markers associated with resistance to CMD in a resistant landrace were identified, using F1 progenies derived from a cross between the CMD resistant landrace TME7 and the susceptible line TMS30555, as a first step in marker assisted breeding for CMD resistance. Bulk segregant analysis (BSA) on the parents, resistant and susceptible DNA pools, using simple sequence repeat (SSR) and amplified fragment length polymorphism (AFLP) markers revealed that an SSR marker, SSRY28-180, donated by the resistant parent was linked with resistance to CMD. Marker-trait association detected by regression analysis showed that the marker, accounted for 57.41% of total phenotypic variation for resistance. The analysis furthershowed that another SSR marker, SSRY106-207 and an AFLP marker, E-ACC/M-CTC-225, accounted for 35.59% and 22.5% of the total phenotypic variation for resistance, respectively. The implication of the results in breeding for resistance to CMD is discussed
Role of the Built Environment in the Recovery From COVID-19: Evidence From a GIS-Based Natural Experiment on the City Blocks in Wuhan, China
The built environment closely relates to the development of COVID-19 and post-disaster recovery. Nevertheless, few studies examine its impacts on the recovery stage and corresponding urban development strategies. This study examines the built environment’s role in Wuhan’s recovery at the city block level through a natural experiment. We first aggregated eight built environmental characteristics (BECs) of 192 city blocks from the perspectives of density, infrastructure supply, and socioeconomic environment; then, the BECs were associated with the recovery rates at the same city blocks, based on the public “COVID-19-free” reports of about 7,100 communities over the recovery stages. The results showed that three BECs, i.e., “number of nearby designated hospitals,” “green ratio,” and “housing price” had significant associations with Wuhan’s recovery when the strict control measures were implemented. At the first time of reporting, more significant associations were also found with “average building age,” “neighborhood facility development level,” and “facility management level.” In contrast, no associations were found for “controlled residential land-use intensity” and “plot ratio” throughout the stages. The findings from Wuhan’s recovery pinpointing evidence with implications in future smart and resilient urban development are as follows: the accessibility of hospitals should be comprehensive in general; and the average housing price of a city block can reflect its post-disaster recoverability compared to that of the other blocks
<i>Spitzer</i> microlens measurement of a massive remnant in a well-separated binary
We report the detection and mass measurement of a binary lens OGLE-2015-BLG-1285La,b, with the more massive component having M1 > 1.35 M⊙ (80% probability). A main-sequence star in this mass range is ruled out by limits on blue light, meaning that a primary in this mass range must be a neutron star (NS) or black hole (BH). The system has a projected separation r⊥ = 6.1 ± 0.4 AU and lies in the Galactic bulge. These measurements are based on the "microlens parallax" effect, i.e., comparing the microlensing light curve as seen from Spitzer, which lay at 1.25 AU projected from Earth, to the light curves from four ground-based surveys, three in the optical and one in the near-infrared. Future adaptive optics imaging of the companion by 30 m class telescopes will yield a much more accurate measurement of the primary mass. This discovery both opens the path and defines the challenges to detecting and characterizing BHs and NSs in wide binaries, with either dark or luminous companions. In particular, we discuss lessons that can be applied to future Spitzer and Kepler K2 microlensing parallax observations
Nanodiamond photocathodes for MPGD-based single photon detectors at future EIC
We are developing gaseous photon detectors for Cherenkov imaging applications
in the experiments at the future Electron Ion Collider. CsI, converting photons
in the far ultraviolet range, is, so far, the only photoconverter compatible
with the operation of gaseous detectors. It is very delicate to handle due to
its hygroscopic nature: the absorbed water vapour decomposes the CsI molecule.
In addition, its quantum efficiency degrades under ion bombardment. These are
the key reasons to quest for novel, less delicate materials for photocathodes
adequate for gaseous photon detectors. Layers of hydrogenated nanodiamond
particles have recently been proposed as an alternative material and have shown
promising characteristics. The performance of nanodiamond photocathodes coupled
to thick GEM-based detectors is the object of our ongoing R\&D. The first phase
of these studies includes the characterization of thick GEM coated with
nanodiamond layers and the robustness of its photoconverting properties with
respect to the bombardment by ions from the multiplication process in the
gaseous detector. The approach is described in detail as well as all the
results obtained so far within these exploratory studies
Large-scale and rapid synthesis of disk-shaped and nano-sized graphene
We synthesized disk-shaped and nano-sized graphene (DSNG) though a novel ion-exchange methodology. This new methodology is achieved by constructing metal ion/ion-exchange resin framework. The morphology and size of the graphene can be modulated by changing the mass ratio of the carbon-containing resin to the cobalt-containing precursor. This is the first time to show that the DSNG formed on the granular transition metal substrate. The DSNG gives a high intensity of photoluminescence at near-UV wavelength of 311 nm which may provide a new type of fluorescence for applications in laser devices, ultraviolet detector UV-shielding agent and energy technology. The emission intensity of the DSNG is thirty times higher than that of the commercial large graphene. Our approach for graphene growth is conveniently controllable, easy to scale-up and the DSNG shows superior luminescent properties as compared to conventional large graphene
Synthesis of Novel Porphyrin and its Complexes Covalently Linked to Multi-Walled Carbon Nanotubes and Study of their Spectroscopy
Novel covalent porphyrin and its complexes (Co2+, Zn2+) functionalized multi-walled carbon nanotubes (MWNTs) have been successfully synthesized by the reaction of the carboxyl on the surface of MWNTs which was synthesized to use carbon radicals generated by the thermal decomposition of azodiisobutyronitrile (AIBN) with 5-p-hydroxyphenyl-10,15,20-triphenyl-porphyrin and its complexes (Co2+, Zn2+). Three resulting nanohybrids were characterized by spectroscopy (FT-IR, Raman, and UV-vis), TGA, and TEM. The quality of porphyrin attached to the MWNTs was determined from thermogravimeric analysis (TGA) of the MWNTs, which showed a weight loss of about 60%. The Raman and absorption spectroscopy data showed that the electronic properties of modified MWNTs were mostly retained, without damaging their one-dimensional electronic properties. From fluorescence measurements, it was observed that the porphyrin and its complexes (Co2+, Zn2+) were nearly quenched by MWNTs, indicating that this covalently modified mode facilitated the effective energy or electron transfer between the excited porphyrin moiety and the extended π-system of MWNTs
Probing the Thermal Deoxygenation of Graphene Oxide using High Resolution In Situ X-Ray based Spectroscopies
Despite the recent developments in Graphene Oxide due to its importance as a
host precursor of Graphene, the detailed electronic structure and its evolution
during the thermal reduction remain largely unknown, hindering its potential
applications. We show that a combination of high resolution in situ X-ray
photoemission and X-ray absorption spectroscopies offer a powerful approach to
monitor the deoxygenation process and comprehensively evaluate the electronic
structure of Graphene Oxide thin films at different stages of the thermal
reduction process. It is established that the edge plane carboxyl groups are
highly unstable, whereas carbonyl groups are more difficult to remove. The
results consistently support the formation of phenol groups through reaction of
basal plane epoxide groups with adjacent hydroxyl groups at moderate degrees of
thermal activation (~400 {\deg}C). The phenol groups are predominant over
carbonyl groups and survive even at a temperature of 1000 {\deg}C. For the
first time a drastic increase in the density of states (DOS) near the Fermi
level at 600 {\deg}C is observed, suggesting a progressive restoration of
aromatic structure in the thermally reduced graphene oxideComment: Pagona Papakonstantinou as Corresponding author, E-mail:
[email protected]
A genome scan for quantitative trait loci affecting cyanogenic potential of cassava root in an outbred population
<p>Abstract</p> <p>Background</p> <p>Cassava (<it>Manihot esculenta </it>Crantz) can produce cyanide, a toxic compound, without self-injury. That ability was called the cyanogenic potential (CN). This project aimed to identify quantitative trait loci (QTL) associated with the CN in an outbred population derived from 'Hanatee' × 'Huay Bong 60', two contrasting cultivars. CN was evaluated in 2008 and in 2009 at Rayong province, and in 2009 at Lop Buri province, Thailand. CN was measured using a picrate paper kit. QTL analysis affecting CN was performed with 303 SSR markers.</p> <p>Results</p> <p>The phenotypic values showed continuous variation with transgressive segregation events with more (115 ppm) and less CN (15 ppm) than either parent ('Hanatee' had 33 ppm and 'Huay Bong 60' had 95 ppm). The linkage map consisted of 303 SSR markers, on 27 linkage groups with a map that encompassed 1,328 cM. The average marker interval was 5.8 cM. Five QTL underlying CN were detected. <it>CN08R1</it>from 2008 at Rayong, <it>CN09R1</it>and <it>CN09R2 </it>from 2009 at Rayong, and <it>CN09L1 </it>and <it>CN09L2 </it>from 2009 at Lop Buri were mapped on linkage group 2, 5, 10 and 11, respectively. Among all the identified QTL, <it>CN09R1 </it>was the most significantly associated with the CN trait with LOD score 5.75 and explained the greatest percentage of phenotypic variation (%Expl.) of 26%.</p> <p>Conclusions</p> <p>Five new QTL affecting CN were successfully identified from 4 linkage groups. Discovery of these QTL can provide useful markers to assist in cassava breeding and studying genes affecting the trait.</p
- …