53 research outputs found
Particle-drip lines from the Hartree-Fock-Bogoliubov theory with Skyrme interaction
We calculate positions of one- and two-particle, proton and neutron drip
lines within the Hartree-Fock-Bogoliubov theory using Skyrme interaction. We
also determine an approximate -process path defined as a line where the
neutron binding energy is equal to 2~MeV. A weakening of the nuclear shell
structure at drip lines is found and interpreted as resulting from a coupling
with continuum states.Comment: 10 pages REVTEX 3.0, 3 uuencoded postscript figures included,
IFT/14/9
Saturation properties and incompressibility of nuclear matter: A consistent determination from nuclear masses
Starting with a two-body effective nucleon-nucleon interaction, it is shown
that the infinite nuclear matter model of atomic nuclei is more appropriate
than the conventional Bethe-Weizsacker like mass formulae to extract saturation
properties of nuclear matter from nuclear masses. In particular, the saturation
density thus obtained agrees with that of electron scattering data and the
Hartree-Fock calculations. For the first time using nuclear mass formula, the
radius constant =1.138 fm and binding energy per nucleon = -16.11
MeV, corresponding to the infinite nuclear matter, are consistently obtained
from the same source. An important offshoot of this study is the determination
of nuclear matter incompressibility to be 288 28 MeV using
the same source of nuclear masses as input.Comment: 14 latex pages, five figures available on request ( to appear in Phy.
Rev. C
Proton-neutron quadrupole interactions: an effective contribution to the pairing field
We point out that the proton-neutron energy contribution, for low multipoles
(in particular for the quadrupole component), effectively renormalizes the
strength of the pairing interaction acting amongst identical nucleons filling
up a single-j or a set of degenerate many-j shells. We carry out the
calculation in lowest-order perturbation theory. We perform a study of this
correction in various mass regions. These results may have implications for the
use of pairing theory in medium-heavy nuclei and for the study of pairing
energy corrections to the liquid drop model when studying nuclear masses.Comment: 19 pages, TeX, 3 tables, 2 figures. Accepted in PR
RPA vs. exact shell-model correlation energies
The random phase approximation (RPA) builds in correlations left out by
mean-field theory. In full 0-hbar-omega shell-model spaces we calculate the
Hartree-Fock + RPA binding energy, and compare it to exact diagonalization. We
find that in general HF+RPA gives a very good approximation to the ``exact''
ground state energy. In those cases where RPA is less satisfactory, however,
there is no obvious correlation with properties of the HF state, such as
deformation or overlap with the exact ground state wavefunction.Comment: 6 pages, 7 figures, submitted to Phys Rev
Semiempirical Shell Model Masses with Magic Number Z = 126 for Superheavy Elements
A semiempirical shell model mass equation applicable to superheavy elements
up to Z = 126 is presented and shown to have a high predictive power. The
equation is applied to the recently discovered superheavy nuclei Z = 118, A =
293 and Z = 114, A = 289 and their decay products.Comment: 7 pages, including 2 figures and 2 table
Scalar ground-state observables in the random phase approximation
We calculate the ground-state expectation value of scalar observables in the
matrix formulation of the random phase approximation (RPA). Our expression,
derived using the quasiboson approximation, is a straightforward generalization
of the RPA correlation energy. We test the reliability of our expression by
comparing against full diagonalization in 0 h-bar omega shell-model spaces. In
general the RPA values are an improvement over mean-field (Hartree-Fock)
results, but are not always consistent with shell-model results. We also
consider exact symmetries broken in the mean-field state and whether or not
they are restored in RPA.Comment: 7 pages, 3 figure
On the discovery of doubly-magic Ni
The paper reports on the first observation of doubly-magic Nickel-48 in an
experimental at the SISSI/LISE3 facility of GANIL. Four Nickel-48 isotopes were
identified. In addition, roughly 100 Nickel-49, 50 Iron-45, and 290 Chromium-42
isotopes were observed. This opens the possibility to search for two-proton
emission from these nuclei.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. Let
First decay study of the very neutron-rich isotope Br-93
The decay of the mass-separated, very neutron-rich isotope Br-93 has been
studied by gamma-spectroscopy. A level scheme of its daughter Kr-93 has been
constructed. Level energies, gamma-ray branching ratios and multipolarities
suggest spins and parities which are in accord with a smooth systematics of the
N=57 isotones for Z less-equal 40, suggesting the N=56 shell closure still to
be effective in Kr isotopes. So far, there is no indication of a progressive
onset of deformation in neutron-rich Kr isotopes.Comment: 17 pages, 3 figures, Phys. Rev. C, in prin
Shell Effects in Nuclei with Vector Self-Coupling of Omega Meson in Relativistic Hartree-Bogoliubov Theory
Shell effects in nuclei about the stability line are investigated within the
framework of the Relativistic Hartree-Bogoliubov (RHB) theory with
self-consistent finite-range pairing. Using 2-neutron separation energies of Ni
and Sn isotopes, the role of - and -meson couplings on the
shell effects in nuclei is examined. It is observed that the existing
successful nuclear forces (Lagrangian parameter sets) based upon the nonlinear
scalar coupling of -meson exhibit shell effects which are stronger than
suggested by the experimental data. We have introduced nonlinear vector
self-coupling of -meson in the RHB theory. It is shown that the
inclusion of the vector self-coupling of -meson in addition to the
nonlinear scalar coupling of -meson provides a good agreement with the
experimental data on shell effects in nuclei about the stability line. A
comparison of the shell effects in the RHB theory is made with the Hartree-Fock
Bogoliubov approach using the Skyrme force SkP. It is shown that the
oft-discussed shell quenching with SkP is not consistent with the available
experimental data.Comment: 34 pages latex, 18 ps figures, replaced with minor corrections in
some figures, accepted for publication in Phys. Rev.
Potential energy surfaces of superheavy nuclei
We investigate the structure of the potential energy surfaces of the
superheavy nuclei 258Fm, 264Hs, (Z=112,N=166), (Z=114,N=184), and (Z=120,N=172)
within the framework of self-consistent nuclear models, i.e. the
Skyrme-Hartree-Fock approach and the relativistic mean-field model. We compare
results obtained with one representative parametrisation of each model which is
successful in describing superheavy nuclei. We find systematic changes as
compared to the potential energy surfaces of heavy nuclei in the uranium
region: there is no sufficiently stable fission isomer any more, the importance
of triaxial configurations to lower the first barrier fades away, and
asymmetric fission paths compete down to rather small deformation. Comparing
the two models, it turns out that the relativistic mean-field model gives
generally smaller fission barriers.Comment: 8 pages RevTeX, 6 figure
- âŠ