53 research outputs found

    Particle-drip lines from the Hartree-Fock-Bogoliubov theory with Skyrme interaction

    Full text link
    We calculate positions of one- and two-particle, proton and neutron drip lines within the Hartree-Fock-Bogoliubov theory using Skyrme interaction. We also determine an approximate rr-process path defined as a line where the neutron binding energy is equal to 2~MeV. A weakening of the nuclear shell structure at drip lines is found and interpreted as resulting from a coupling with continuum states.Comment: 10 pages REVTEX 3.0, 3 uuencoded postscript figures included, IFT/14/9

    Saturation properties and incompressibility of nuclear matter: A consistent determination from nuclear masses

    Get PDF
    Starting with a two-body effective nucleon-nucleon interaction, it is shown that the infinite nuclear matter model of atomic nuclei is more appropriate than the conventional Bethe-Weizsacker like mass formulae to extract saturation properties of nuclear matter from nuclear masses. In particular, the saturation density thus obtained agrees with that of electron scattering data and the Hartree-Fock calculations. For the first time using nuclear mass formula, the radius constant r0r_0=1.138 fm and binding energy per nucleon ava_v = -16.11 MeV, corresponding to the infinite nuclear matter, are consistently obtained from the same source. An important offshoot of this study is the determination of nuclear matter incompressibility K∞K_{\infty} to be 288±\pm 28 MeV using the same source of nuclear masses as input.Comment: 14 latex pages, five figures available on request ( to appear in Phy. Rev. C

    Proton-neutron quadrupole interactions: an effective contribution to the pairing field

    Get PDF
    We point out that the proton-neutron energy contribution, for low multipoles (in particular for the quadrupole component), effectively renormalizes the strength of the pairing interaction acting amongst identical nucleons filling up a single-j or a set of degenerate many-j shells. We carry out the calculation in lowest-order perturbation theory. We perform a study of this correction in various mass regions. These results may have implications for the use of pairing theory in medium-heavy nuclei and for the study of pairing energy corrections to the liquid drop model when studying nuclear masses.Comment: 19 pages, TeX, 3 tables, 2 figures. Accepted in PR

    RPA vs. exact shell-model correlation energies

    Full text link
    The random phase approximation (RPA) builds in correlations left out by mean-field theory. In full 0-hbar-omega shell-model spaces we calculate the Hartree-Fock + RPA binding energy, and compare it to exact diagonalization. We find that in general HF+RPA gives a very good approximation to the ``exact'' ground state energy. In those cases where RPA is less satisfactory, however, there is no obvious correlation with properties of the HF state, such as deformation or overlap with the exact ground state wavefunction.Comment: 6 pages, 7 figures, submitted to Phys Rev

    Semiempirical Shell Model Masses with Magic Number Z = 126 for Superheavy Elements

    Get PDF
    A semiempirical shell model mass equation applicable to superheavy elements up to Z = 126 is presented and shown to have a high predictive power. The equation is applied to the recently discovered superheavy nuclei Z = 118, A = 293 and Z = 114, A = 289 and their decay products.Comment: 7 pages, including 2 figures and 2 table

    Scalar ground-state observables in the random phase approximation

    Get PDF
    We calculate the ground-state expectation value of scalar observables in the matrix formulation of the random phase approximation (RPA). Our expression, derived using the quasiboson approximation, is a straightforward generalization of the RPA correlation energy. We test the reliability of our expression by comparing against full diagonalization in 0 h-bar omega shell-model spaces. In general the RPA values are an improvement over mean-field (Hartree-Fock) results, but are not always consistent with shell-model results. We also consider exact symmetries broken in the mean-field state and whether or not they are restored in RPA.Comment: 7 pages, 3 figure

    On the discovery of doubly-magic 48^{48}Ni

    Full text link
    The paper reports on the first observation of doubly-magic Nickel-48 in an experimental at the SISSI/LISE3 facility of GANIL. Four Nickel-48 isotopes were identified. In addition, roughly 100 Nickel-49, 50 Iron-45, and 290 Chromium-42 isotopes were observed. This opens the possibility to search for two-proton emission from these nuclei.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. Let

    First decay study of the very neutron-rich isotope Br-93

    Full text link
    The decay of the mass-separated, very neutron-rich isotope Br-93 has been studied by gamma-spectroscopy. A level scheme of its daughter Kr-93 has been constructed. Level energies, gamma-ray branching ratios and multipolarities suggest spins and parities which are in accord with a smooth systematics of the N=57 isotones for Z less-equal 40, suggesting the N=56 shell closure still to be effective in Kr isotopes. So far, there is no indication of a progressive onset of deformation in neutron-rich Kr isotopes.Comment: 17 pages, 3 figures, Phys. Rev. C, in prin

    Shell Effects in Nuclei with Vector Self-Coupling of Omega Meson in Relativistic Hartree-Bogoliubov Theory

    Full text link
    Shell effects in nuclei about the stability line are investigated within the framework of the Relativistic Hartree-Bogoliubov (RHB) theory with self-consistent finite-range pairing. Using 2-neutron separation energies of Ni and Sn isotopes, the role of σ\sigma- and ω\omega-meson couplings on the shell effects in nuclei is examined. It is observed that the existing successful nuclear forces (Lagrangian parameter sets) based upon the nonlinear scalar coupling of σ\sigma-meson exhibit shell effects which are stronger than suggested by the experimental data. We have introduced nonlinear vector self-coupling of ω\omega-meson in the RHB theory. It is shown that the inclusion of the vector self-coupling of ω\omega-meson in addition to the nonlinear scalar coupling of σ\sigma-meson provides a good agreement with the experimental data on shell effects in nuclei about the stability line. A comparison of the shell effects in the RHB theory is made with the Hartree-Fock Bogoliubov approach using the Skyrme force SkP. It is shown that the oft-discussed shell quenching with SkP is not consistent with the available experimental data.Comment: 34 pages latex, 18 ps figures, replaced with minor corrections in some figures, accepted for publication in Phys. Rev.

    Potential energy surfaces of superheavy nuclei

    Get PDF
    We investigate the structure of the potential energy surfaces of the superheavy nuclei 258Fm, 264Hs, (Z=112,N=166), (Z=114,N=184), and (Z=120,N=172) within the framework of self-consistent nuclear models, i.e. the Skyrme-Hartree-Fock approach and the relativistic mean-field model. We compare results obtained with one representative parametrisation of each model which is successful in describing superheavy nuclei. We find systematic changes as compared to the potential energy surfaces of heavy nuclei in the uranium region: there is no sufficiently stable fission isomer any more, the importance of triaxial configurations to lower the first barrier fades away, and asymmetric fission paths compete down to rather small deformation. Comparing the two models, it turns out that the relativistic mean-field model gives generally smaller fission barriers.Comment: 8 pages RevTeX, 6 figure
    • 

    corecore