11 research outputs found

    Prediction of Draft Force and Energy Requirement for Subsoiling Operation with a Fuzzy Logic Approach

    No full text
    In this study, a knowledge-based fuzzy logic system was developed on experimental data and used to predict the draft force and energy requirement of tillage operation. In comparison with traditional methods, the fuzzy logic model acts more effectively in creating a relationship between multiple inputs to achieve an output signal in a nonlinear range. Field experiments were carried out in a sandy loam soil on coastal plain at the Edisto Research and Education Center of Clemson University near Blackville, South Carolina (Latitude 33˚ 21"N, Longitude 81˚ 18"W). In this paper, a fuzzy model based on Mamdani inference system has been used. This model was developed for predicting the changes of draft force and energy requirement for subsoiling operation. This fuzzy model contains 25 rules. In this investigation, the Mamdani Max-Min inference was used for deducing the mechanism (composition of fuzzy rules with input). The center of gravity defuzzification method was also used for conversion of the final output of the system into a classic number. The validity of the presented model was achieved by numerical error criterion, based on empirical data. The prediction results showed a close relationship between measured and predicted values such that the mean relative error of measured and predicted values were 3.1% and 2.94% for draft resistant force and energy required for subsoiling operation, respectively. The comparison between the fuzzy logic model and the regression models showed that the mean relative errors from the regression model are greater than that from the fuzzy logic model

    Prediction of Soil Fragmentation During Tillage Operation Using Adaptive Neuro Fuzzy Inference System (ANFIS)

    No full text
    Suitable soil structure is important for crop growth. One of the main characteristics of soil structure is the size of soil aggregates. There are several ways of showing the stability of soil aggregates, among which the determination of the median weight diameter of soil aggregates is the most common method. In this paper, a method based on adaptive neuro fuzzy inference system (ANFIS) was used to describe the soil fragmentation for seedbed preparation with combination of primary and secondary tillage implements including subsoiler, moldboard plow and disk harrow. Adaptive neuro fuzzy inference system (ANFIS) is a suitable approach to solving non-linear problems. ANFIS is a combination of fuzzy inference system (FIS) and an artificial neural network (ANN) method and it uses the ability of both models. In this study, the model inputs included “soil moisture content”, “tractor forward speed”and “working depth”. The performance of the model was evaluated using the statistical parameters of root mean square error (RMSE), percentage of relative error (ε), mean absolute error (MAE) and the coefficient of determination (R2). These parameters were determined as 0.135, 3.6%, 0.122 and 0.981, respectively. For the evaluation of the ANFIS model, the predicted data using this model were compared to the data of artificial neural network model. The simulation results by ANFIS model showed to be closer to the actual data compared with those made by the artificial neural network model

    Detection of Two Types of Weed through Machine Vision System: Improving Site-Specific Spraying

    No full text
    Introduction With increase in world population, one of the approaches to provide food is using site-specific management system or so-called precision farming. In this management system, management of crop production inputs such as fertilizers, lime, herbicides, seed, etc. is done based on farm location features, with the aim of reducing waste, increasing revenues and maintaining environmental quality. Precision farming involves various aspects and is applicable on farm fields at all stages of tillage, planting, and harvesting. Today, in line with precision farming purposes, and to control weeds, pests, and diseases, all the efforts of specialists in precision farming is to reduce the amount of chemical substances in products. Although herbicides improve the quality and quantity of agricultural production, the possibility of applying inappropriately and unreasonably is very high. If the dose is too low, weed control is not performed correctly. Otherwise, If the dosage is too high, herbicides can be toxic for crops, can be transferred to soil and stay in it for a long time, and can penetrate to groundwater. By applying herbicides to variable rate, the potential for significant cost savings and reduced environmental damage to the products and environment will be possible. It is evident that in large-scale modern agriculture, individual management of each plant without using some advanced technologies is not possible. using machine vision systems is one of precision farming techniques to identify weeds. This study aimed to detect three plant such as Centaurea depressa M.B, Malvaneglecta and Potato plant using machine vision system. Materials and Methods In order to train algorithm of designed machine vision system, a platform that moved with the speed of 10.34 was used for shooting of Marfona potato fields. This platform was consisted of a chassis, camera (DFK23GM021,CMOS, 120 f/s, Made in Germany), and a processor system equipped with Matlab 2015 version. The video camera was installed in 60-centimeter height above the ground level. Therefore, all plants in the camera field of view (whether on the crops row or between the rows) were analyzed. This study conducted on 4 hectares of potato fields in Kermanshah–Iran (longitude: 7.03 E; latitude: 4.22 N). The most suitable color space for segmentation plants was HSV color space and most suitable channel of applying threshold was the H channel. In this study, features in two areas of color features, texture features based on gray co-occurrence matrix were extracted. Ultimately, 126 color features and 80 texture features were extracted from each object. In final six features among 206 features were selected. Results and Discussion Among 206 extracted features, six effective features including the additional second component of the YCbCr color space, green index minus blue in RGB color space, sum entropy in the neighborhood of 45 degree, diagonal moment in the neighborhood of 0 degree, entropy in the neighborhood of 45 degree, additional third component index in CMY color space were selected using hybrid ANN-PSO. This means that, two set features have the same effect over plants. The result shows that hybrid ANN-SAGA classified Centaurea depressa M.B, Malvaneglecta and Potato plant with 99.61% accuracy. This accuracy is high and this meant that 1. These plants have different 6 selected features, 2. The classifier is very powerful to classify. Conclusions 1. Plants with similar features make the classification process complicated and less accurate. 2. The presence of shadow on the plants’ leaves reduces the accuracy of the classification

    Comparison of Mathematical Modeling, Artificial Neural Networks and Fuzzy Logic for Predicting the Moisture Ratio of Garlic and Shallot in a Fluidized Bed Dryer

    No full text
    Introduction Garlic (Allium sativum L.) is an important Allium crop in the world. Due to its therapeutic properties, it was cultivated in many countries. Furthermore, garlic is usually used as a flavoring agent; it may be used in the shape of powder or granule as a valuable condiment for foods. In addition to its use in food products, it was also widely used as an anticancer agent. Shallot (Allium hiertifolium Boiss. L) is a perennial and bulbous plant. It is from Alliaceae family and is an important medicinal plant. The shallot is native of Iran, and grows in the high pastures. Shallot is consumed in dry areas in most parts of the country. Also shallots have been well known in Iranian folk medicine and its bulbs have been widely used for treating rheumatic and inflammatory disorders. In addition, this plant is used in the preparation of significant amounts of potassium, phosphorus, calcium, magnesium, sodium, pickles and as an additive to yogurt and pickles. ANN as a modern approach has successfully been used to solve an extensive variety of problems in the science and engineering, exclusively for some space where the conventional modeling procedure fail. A well-trained ANN can be used as a predictive model for a special use, which is a data processing system inspired by biological neural system. When mathematical equations are difficult to extrapolate, and fuzzy logic is better when decisions must be made with the estimated values below the incomplete information. The fuzzy logic theory effectively addresses the uncertainty problems that solve the ambiguity. Materials and Methods  The aim of this study was to predict moisture ratio of garlic and shallot during the drying process with fluidized bed dryer using mathematical model, artificial neural networks and fuzzy logic methods. Tests were carried out on three levels of inlet air temperature (40, 55 and 70 °C) and three inlet air velocities (0.5, 1.5 and 2.5 m/s). To estimate the drying kinetic of garlic and shallot, five mathematical models were used to fit the experimental data of thin layer drying. Three factors (air temperature, air velocity and drying time) to forecast moisture ratio in fluidized bed dryer as independent variables for artificial neural networks and fuzzy logic was considered. Cascade forward back propagation (CFBP) and feed forward back propagation (FFBP) with Levenberg-Marquardt (LM), Bayesian learning (BR) algorithms for ANN and the Mamdani Fuzzy Inference System using triangular membership function were used for training patterns. Results and Discussion Consequently, the Page and Midilli et al. model was selected as the best mathematical model to describe the drying kinetics of the garlic and shallot slices, respectively. The results of artificial neural networks model for predicting MR showed that the R2 of 0.9994 and 0.9996; and and RMSE of 0.0036 and 0.0014 were obtained for garlic and shallot, respectively. Also, The fuzzy inference system presented the R2 of 0.9997 and 0.9998; and and RMSE of 0.0027 and 0.0011 for garlic and shallot, respectively. Comparing the results obtained from mathematical models, artificial neural networks and fuzzy logic, showed that the RMSE in the fuzzy logic was lower than artificial neural network and mathematical models. Conclusions Three factors (air temperature, air velocity and drying time) were considered for forecasting moisture ratio in fluidized bed dryer as independent variables using mathematical model, artificial neural networks and fuzzy logic. Cascade forward back propagation (CFBP) and feed forward back propagation (FFBP) with Levenberg-Marquardt (LM), Bayesian learning (BR) algorithms and the Mamdani Fuzzy Inference System using triangular membership function were used for training the patterns. Comparing the results obtained from mathematical models, artificial neural networks and fuzzy logic, showed that the root mean square error in fuzzy logic was lower than others

    Soil biological activity as affected by tillage intensity

    No full text
    The effect of tillage intensity on changes of microbiological activity and content of particulate organic matter in soil under winter wheat duirng 3 years was studied. Microbial response related to the tillage-induced changes in soil determined on the content of biomass C and N, the rate of CO2 evolution, B/F ratio, the activity of dehydrogenases, acid and alkaline phosphatases, soil C/N ratio and microbial biomass C/N ratio confirmed the high sensitivity of soil microbial populations to the tillage system applied. After three year studies, the direct sowing system enhanced the increase of labile fraction of organic matter content in soil. There were no significant changes in the labile fraction quantity observed in soil under conventional tillage. Similar response related to the tillage intensity was observed in particulate organic matter quantities expressed as a percentage of total organic matter in soil. A high correlation coefficients calculated between contents of soil microbial biomass C and N, particulate organic matter and potentiallymineralizable N, and the obtained yields of winter wheat grown on experimental fields indicated on a high importance of biological quality of status of soil for agricultural crop production
    corecore