195 research outputs found

    Limitations on the superposition principle: superselection rules in non-relativistic quantum mechanics

    Get PDF
    The superposition principle is a very basic ingredient of quantum theory. What may come as a surprise to many students, and even to many practitioners of the quantum craft, is tha superposition has limitations imposed by certain requirements of the theory. The discussion of such limitations arising from the so-called superselection rules is the main purpose of this paper. Some of their principal consequences are also discussed. The univalence, mass and particle number superselection rules of non-relativistic quantum mechanics are also derived using rather simple methods.Comment: 22 pages, no figure

    A useful form of the recurrence relation between relativistic atomic matrix elements of radial powers

    Full text link
    Recently obtained recurrence formulae for relativistic hydrogenic radial matrix elements are cast in a simpler and perhaps more useful form. This is achieved with the help of a new relation between the rar^a and the ÎČrb\beta r^b terms (ÎČ\beta is a 4×44\times 4 Dirac matrix and a,ba, b are constants) in the atomic matrix elements.Comment: 7 pages, no figure

    Recurrence relation for relativistic atomic matrix elements

    Full text link
    Recurrence formulae for arbitrary hydrogenic radial matrix elements are obtained in the Dirac form of relativistic quantum mechanics. Our approach is inspired on the relativistic extension of the second hypervirial method that has been succesfully employed to deduce an analogous relationship in non relativistic quantum mechanics. We obtain first the relativistic extension of the second hypervirial and then the relativistic recurrence relation. Furthermore, we use such relation to deduce relativistic versions of the Pasternack-Sternheimer rule and of the virial theorem.Comment: 10 pages, no figure
    • 

    corecore