93 research outputs found

    Threatening Patch Attacks on Object Detection in Optical Remote Sensing Images

    Full text link
    Advanced Patch Attacks (PAs) on object detection in natural images have pointed out the great safety vulnerability in methods based on deep neural networks. However, little attention has been paid to this topic in Optical Remote Sensing Images (O-RSIs). To this end, we focus on this research, i.e., PAs on object detection in O-RSIs, and propose a more Threatening PA without the scarification of the visual quality, dubbed TPA. Specifically, to address the problem of inconsistency between local and global landscapes in existing patch selection schemes, we propose leveraging the First-Order Difference (FOD) of the objective function before and after masking to select the sub-patches to be attacked. Further, considering the problem of gradient inundation when applying existing coordinate-based loss to PAs directly, we design an IoU-based objective function specific for PAs, dubbed Bounding box Drifting Loss (BDL), which pushes the detected bounding boxes far from the initial ones until there are no intersections between them. Finally, on two widely used benchmarks, i.e., DIOR and DOTA, comprehensive evaluations of our TPA with four typical detectors (Faster R-CNN, FCOS, RetinaNet, and YOLO-v4) witness its remarkable effectiveness. To the best of our knowledge, this is the first attempt to study the PAs on object detection in O-RSIs, and we hope this work can get our readers interested in studying this topic

    The Development of LLMs for Embodied Navigation

    Full text link
    In recent years, the rapid advancement of Large Language Models (LLMs) such as the Generative Pre-trained Transformer (GPT) has attracted increasing attention due to their potential in a variety of practical applications. The application of LLMs with Embodied Intelligence has emerged as a significant area of focus. Among the myriad applications of LLMs, navigation tasks are particularly noteworthy because they demand a deep understanding of the environment and quick, accurate decision-making. LLMs can augment embodied intelligence systems with sophisticated environmental perception and decision-making support, leveraging their robust language and image-processing capabilities. This article offers an exhaustive summary of the symbiosis between LLMs and embodied intelligence with a focus on navigation. It reviews state-of-the-art models, research methodologies, and assesses the advantages and disadvantages of existing embodied navigation models and datasets. Finally, the article elucidates the role of LLMs in embodied intelligence, based on current research, and forecasts future directions in the field. A comprehensive list of studies in this survey is available at https://github.com/Rongtao-Xu/Awesome-LLM-E

    Anthropogenic Aerosols Cause Recent Pronounced Weakening of Asian Summer Monsoon Relative to Last Four Centuries

    Get PDF
    The Asian Summer Monsoon (ASM) affects ecosystems, biodiversity, and food security of billions of people. In recent decades, ASM strength (as represented by precipitation) has been decreasing, but instrumental measurements span only a short period of time. The initiation and the dynamics of the recent trend are unclear. Here for the first time, we use an ensemble of 10 tree ring-width chronologies from the west-central margin of ASM to reconstruct detail of ASM variability back to 1566 CE. The reconstruction captures weak/strong ASM events and also reflects major locust plagues. Notably, we found an unprecedented 80-year trend of decreasing ASM strength within the context of the 448-year reconstruction, which is contrary to what is expected from greenhouse warming. Our coupled climate model shows that increasing anthropogenic sulfate aerosol emissions over the Northern Hemisphere could be the dominant factor contributing to the ASM decrease. Plan Language Summary Monsoonal rainfall has a certain influence on agriculture and industry in the regions of Asian Summer Monsoon (ASM). An understanding of the spatial-temporal variability of the ASM and the associated dynamics is vital for terrestrial ecosystems, water resources, forests, and landscapes. We have developed a 448-year ASM reconstruction back to 1566 CE using 10 tree ring chronologies from the margin region of ASM. We find that historical severe droughts and locust plague disasters during weak ASM events. The recent decreasing ASM trend persisting for over 80 years is unprecedented over the past 448 years. Coupled climate models show that increasing anthropogenic aerosol emissions are the dominant underlying factor. Our aim is that the time series will find a wide range of utility for understanding past climate variability and for predicting future climate change.National Natural Science Foundation of China [41630531]; National Research Program for Key Issues in Air Pollution Control [DQGG0104]; Chinese Academy of Sciences [QYZDJ-SSW-DQC021, XDPB05, GJHZ1777]; Institute of Earth Environment, Chinese Academy of Sciences; State Key Laboratory of Loess and Quaternary Geology6 month embargo; first published: 09 April 2019This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Low-Cost Solution for Assessment of Urban Flash Flood Impacts Using Sentinel-2 Satellite Images and Fuzzy Analytic Hierarchy Process: A Case Study of Ras Ghareb City, Egypt

    No full text
    Natural hazards are indeed counted as the most critical challenges facing our world, represented in floods, earthquakes, volcanoes, hurricanes, and forest fires. Among these natural hazards, the flash flood is regarded the most frequent. In this work, we utilized two Sentinel-2 satellite images, before and after the flash flood, SRTM and photos captured by using a helicopter. This paper aims at three prime objectives. Firstly, the flood influence is determined on the city of Ras Ghareb, Egypt, based on analyzing free satellite data (Sentinel-2 images). Secondly, fuzzy the analytical hierarchy process (FAHP) method and a geographical information system (GIS) are integrated for flood risk analysis and evaluation in the flood-prone area. Finally, such a flood vulnerability map is used as an index to assist the decision-makers prepare for probable flooding. FAHP is preferable as it can cater to the uncertainties in data and analysis. As a result, FAHP is appropriate to determine the flood-vulnerable area in cities especially due to the matching with the most destroyed areas identified by the change detection between the two Sentinel-2 images. Then, the decision-maker can depend on Sentinel-2 images to estimate the flood influence through a regional scale or applying the FAHP on cities susceptible to flash floods in case of unavailable satellite images to contribute in establishing an early warning system enough to the evacuation of the risky areas

    Spatial-Temporal Pattern Evolution of Xi’an Metropolitan Area Using DMSP/OLS and NPP/VIIRS Nighttime Light Data

    No full text
    A metropolitan area provides valuable space for economic development, and it is the home on which human beings depend for their survival. However, metropolitan areas are often faced with prominent problems caused by the natural environment and city layout. Therefore, understanding metropolitan areas’ spatial-temporal pattern evolution is of vital significance for medium-to-long-term city growth. This study uses the nighttime light data to monitor the urban pattern evolution of the Xi’an Metropolitan Area (XMA) over the past 30 years. The study results suggest that the continuity correction and consistency correction used in this study can construct a stable long-term, multi-source nighttime light dataset and, at the same time, accurately reflect the changes in the urban pattern. The determination coefficient between gross domestic product (GDP) and total nighttime light (TNL) reached 0.90; the nighttime light index (NLI) of the XMA is characterized by high spatial heterogeneity. The NLI of the core areas has been saturated before 2004, while the CNLI value of the peripheral Chang’an District was 0.31 by 2021. Urban land expanded in all directions, with an average expansion rate of 12.9% and an expansion intensity of 2.6%. The nighttime light gravity center generally shifted towards southwest, from (108.915° E, 34.355° N) in 1992 to (108.922° E, 34.343° N) in 2021. The urban pattern of the metropolitan area is influenced by the natural environment, and the southwest and northeast directions will be the primary development directions in the future. The local development policy is a crucial driving factor in the urban pattern evolution, which significantly affects the location and intensity of urban expansion; the center of gravity of the XMA has different migration directions in different periods, meaning that the development of the metropolitan area tends to be balanced

    GIS Analysis of Changes in Ecological Vulnerability Using a SPCA Model in the Loess Plateau of Northern Shaanxi, China

    No full text
    Changes in ecological vulnerability were analyzed for Northern Shaanxi, China using a geographic information system (GIS). An evaluation model was developed using a spatial principal component analysis (SPCA) model containing land use, soil erosion, topography, climate, vegetation and social economy variables. Using this model, an ecological vulnerability index was computed for the research region. Using natural breaks classification (NBC), the evaluation results were divided into five types: potential, slight, light, medium and heavy. The results indicate that there is greater than average optimism about the conditions of the study region, and the ecological vulnerability index (EVI) of the southern eight counties is lower than that of the northern twelve counties. From 1997 to 2011, the ecological vulnerability index gradually decreased, which means that environmental security was gradually enhanced, although there are still some places that have gradually deteriorated over the past 15 years. In the study area, government and economic factors and precipitation are the main reasons for the changes in ecological vulnerability

    Urbanization Trends Analysis Using Hybrid Modeling of Fuzzy Analytical Hierarchical Process-Cellular Automata-Markov Chain and Investigating Its Impact on Land Surface Temperature over Gharbia City, Egypt

    No full text
    Quick population increase and the desire for urbanization are the main drivers for accelerating urban expansion on agricultural lands in Egypt. This issue is obvious in governorates with no desert backyards. This study aims to (1) explore the trend of Land Use Land Cover Change (LULCC) through the period of 1991–2018; (2) upgrade the reliability of predicting LULCC by integrating the Cellular Automata (CA)-Markov chain and fuzzy analytical hierarchy process (FAHP); and (3) perform analysis of urbanization risk on LST trends over the Gharbia governorate for the decision makers to implement effective strategies for sustainable land use. Multi-temporal Landsat images were used to monitor LULCC dynamics from 1991 to 2018 and then simulate LULCC in 2033 and 2048. Two comparable models were adopted for the simulation of spatiotemporal dynamics of land use in the study area: CA-Markov chain and FAHP-CA-Markov chain hybrid models. The second model upgrades the potential of the CA-Markov chain for prediction by its integration with FAHP, which can determine the locations of high potential to be urbanized. The outcomes stated a significant LULCC in Gharbia during the study period—specifically, urban sprawl on agricultural land, and this trend is predicted to carry on. The agricultural sector represented 91.2% in 1991 and reduced to 83.7% in 2018. The built-up area is almost doubled by 2048 with respect to 2018. The regression analysis revealed the LST increase due to urbanization, causing an urban heat island phenomenon. Criteria-based analysis reveals the district’s vulnerability to rapid urbanization, which is efficient for data-gap zones. The simulation results make sense since the FAHP-CA-Markov simulated the LULCC in a thoughtful way, considering the driving forces of LULCC, while the CA-Markov chain results were relatively random. Therefore, the FAHP-CA-Markov chain is the pioneer to be relied upon for future projection. The findings of this work provide a better understanding of LULCC trends over the years supporting decision makers toward sustainable land use. Thus, further urbanization should be planned to avert the loss of agricultural land and uninterrupted increasing temperatures

    Feline immunodeficiency virus-mediated long-term transgene expression in undifferentiated retinal progenitor cells and its downregulation in differentiated cells

    Get PDF
    PURPOSE: Lentivirus-mediated gene transfer is an important approach to modify the function of progenitor cells in ex vivo gene therapy, but may be susceptible to downregulation due to transcriptional silencing. The purpose of this study was to analyze the stability of lentivirus-mediated transgene expression in undifferentiated and differentiated retinal progenitor cells (RPCs), and to characterize the effect of lentivirus transduction on RPC differentiation in vitro. METHODS: RPCs derived from postnatal day 1 mice were expanded in defined serum-free culture medium and transduced with nonprimate lentiviral vector of feline immunodeficiency virus (FIV) expressing yellow fluorescent protein (YFP) reporter. Long-term expression of YFP in undifferentiated and differentiated RPCs was analyzed. Expression of various markers for RPCs and differentiated cells was analyzed by immunochemical staining in lentivirus-transduced and control RPCs. Differentiated postmitotic cells were revealed by negative labeling of bromodeoxyuridine (BrdU). RESULTS: FIV transduction induced long-term expression of YFP reporter in RPCs for up to 53 days (10 passages) with no sign of decrease in expression level. FIV transduction did not alter the expression profile of various markers in retinal spheres, including nestin, microtubule-associated protein 2 (MAP-2), glial fibrillary acidic protein (GFAP), and opsin. However, YFP expression was downregulated in differentiated BrdU-negative postmitotic cells. CONCLUSIONS: FIV-mediated long-term expression of transgene in undifferentiated RPCs is downregulated upon their differentiation. Thus, lentivirus-mediated ex vivo modulation should be cautiously analyzed for transgene expression not only in undifferentiated RPCs, but also in differentiated postmitotic cells
    corecore