4 research outputs found

    Personalized antiplatelet therapy guided by clopidogrel pharmacogenomics in acute ischemic stroke and transient ischemic attack: A prospective, randomized controlled trial

    Get PDF
    Background: Clopidogrel is frequently used in patients with ischemic stroke or transient ischemic attack (TIA), but its efficacy is hampered by inter-individual variability, due to genetic differences associated with clopidogrel metabolism. We conducted this randomized controlled trial to validate whether the personalized antiplatelet therapy based on clopidogrel pharmacogenomics and clinical characteristics leads to better clinical outcomes compared with standard treatment.Methods: Patients were randomly divided into the standard group or pharmacogenetic group, in which the pharmacogenetic group required the detection of the genotyping of CYP2C19*2, CYP2C19*3, and CYP2C19*17. Patients were followed up for 90 days for the primary efficacy endpoint of new stroke events, secondary efficacy endpoint of individual or composite outcomes of the new clinical vascular events, and the incidence of disability. The primary safety outcome was major bleeding.Results: A total of 650 patients underwent randomization, among which 325 were in the pharmacogenomics group while 325 were in the standard group. Our study found after a 90-day follow-up, the risk of stroke and composite vascular events in the pharmacogenomics group was lower than that in the standard group. The incidence of disability significantly decreased in the pharmacogenomics group. In addition, no statistically significant differences were observed in bleeding events between the two groups.Conclusion: The present study demonstrates that personalized antiplatelet therapy guided by clopidogrel pharmacogenomics and clinical characteristics can significantly improve the net clinical benefit of ischemic stroke or TIA patients during the 90-day treatment period without increasing bleeding risk

    Comparative Immunoreactivity Analyses of Hantaan Virus Glycoprotein-Derived MHC-I Epitopes in Vaccination

    No full text
    MHC-I antigen processes and presentation trigger host-specific anti-viral cellular responses during infection, in which epitope-recognizing cytotoxic T lymphocytes eliminate infected cells and contribute to viral clearance through a cytolytic killing effect. In this study, Hantaan virus (HTNV) GP-derived 9-mer dominant epitopes were obtained with high affinity to major HLA-I and H-2 superfamilies. Further immunogenicity and conservation analyses selected 11 promising candidates, and molecule docking (MD) was then simulated with the corresponding MHC-I alleles. Two-way hierarchical clustering revealed the interactions between GP peptides and MHC-I haplotypes. Briefly, epitope hotspots sharing good affinity to a wide spectrum of MHC-I molecules highlighted the biomedical practice for vaccination, and haplotype clusters represented the similarities among individuals during T-cell response establishment. Cross-validation proved the patterns observed through both MD simulation and public data integration. Lastly, 148 HTNV variants yielded six types of major amino acid residue replacements involving four in nine hotspots, which minimally influenced the general potential of MHC-I superfamily presentation. Altogether, our work comprehensively evaluates the pan-MHC-I immunoreactivity of HTNV GP through a state-of-the-art workflow in light of comparative immunology, acknowledges present discoveries, and offers guidance for ongoing HTNV vaccine pursuit

    Comparative Immunoreactivity Analyses of Hantaan Virus Glycoprotein-Derived MHC-I Epitopes in Vaccination

    No full text
    MHC-I antigen processes and presentation trigger host-specific anti-viral cellular responses during infection, in which epitope-recognizing cytotoxic T lymphocytes eliminate infected cells and contribute to viral clearance through a cytolytic killing effect. In this study, Hantaan virus (HTNV) GP-derived 9-mer dominant epitopes were obtained with high affinity to major HLA-I and H-2 superfamilies. Further immunogenicity and conservation analyses selected 11 promising candidates, and molecule docking (MD) was then simulated with the corresponding MHC-I alleles. Two-way hierarchical clustering revealed the interactions between GP peptides and MHC-I haplotypes. Briefly, epitope hotspots sharing good affinity to a wide spectrum of MHC-I molecules highlighted the biomedical practice for vaccination, and haplotype clusters represented the similarities among individuals during T-cell response establishment. Cross-validation proved the patterns observed through both MD simulation and public data integration. Lastly, 148 HTNV variants yielded six types of major amino acid residue replacements involving four in nine hotspots, which minimally influenced the general potential of MHC-I superfamily presentation. Altogether, our work comprehensively evaluates the pan-MHC-I immunoreactivity of HTNV GP through a state-of-the-art workflow in light of comparative immunology, acknowledges present discoveries, and offers guidance for ongoing HTNV vaccine pursuit
    corecore