56 research outputs found

    Broadband nonlinear modulation of incoherent light using a transparent optoelectronic neuron array

    Full text link
    Nonlinear optical processing of ambient natural light is highly desired in computational imaging and sensing applications. A strong optical nonlinear response that can work under weak broadband incoherent light is essential for this purpose. Here we introduce an optoelectronic nonlinear filter array that can address this emerging need. By merging 2D transparent phototransistors (TPTs) with liquid crystal (LC) modulators, we create an optoelectronic neuron array that allows self-amplitude modulation of spatially incoherent light, achieving a large nonlinear contrast over a broad spectrum at orders-of-magnitude lower intensity than what is achievable in most optical nonlinear materials. For a proof-of-concept demonstration, we fabricated a 10,000-pixel array of optoelectronic neurons, each serving as a nonlinear filter, and experimentally demonstrated an intelligent imaging system that uses the nonlinear response to instantly reduce input glares while retaining the weaker-intensity objects within the field of view of a cellphone camera. This intelligent glare-reduction capability is important for various imaging applications, including autonomous driving, machine vision, and security cameras. Beyond imaging and sensing, this optoelectronic neuron array, with its rapid nonlinear modulation for processing incoherent broadband light, might also find applications in optical computing, where nonlinear activation functions that can work under ambient light conditions are highly sought.Comment: 20 Pages, 5 Figure

    HONO Formation from the Oxidation Reactions of ClO, NO, and Water in the Gas-Phase and at the Air-Water Interface

    No full text
    Nitrous acid (HONO) plays a key role in atmospheric chemistry. Nevertheless, the HONO formation mechanism in the atmosphere, especially in the marine boundary layer, remains to be fully understood. Here, Born–Oppenheimer molecular dynamic and metadynamics simulations were performed to study the formation mechanism of HONO from the oxidation reactions of ClO radical and NO with the addition of (H2O)1–2, considering a monohydrated system ((ClO)(NO)(H2O)1) and dihydrated system ((ClO)(NO)(H2O)2), as well as at the air-water interface. This study shows that HONO formation follows a single-water mechanism in gas-phase and air-water interface systems. The free-energy barrier of the (ClO)(NO)(H2O)1 system was 9.66 kJ mol−1, whereas the (ClO)(NO)(H2O)2 system was a barrierless reaction. HONO formation at the air-water interface was faster than that in monohydrated and dihydrated systems. Although the concentration of ClO radical in the marine boundary layer is two orders higher than that of Cl radical, the production rates of HONO from the (ClO)(NO)(H2O)1 system are six orders lower than that from the (Cl)(NO)(H2O)1 system, which means that Cl radical dominates HONO formation rather than ClO radical in the marine boundary layer. These results can deepen our understanding of the HONO formation mechanism and be used to reduce HONO emissions and establish HONO-control strategies

    The Homogeneous Gas-Phase Formation Mechanism of PCNs from Cross-Condensation of Phenoxy Radical with 2-CPR and 3-CPR: A Theoretical Mechanistic and Kinetic Study

    No full text
    Chlorophenols (CPs) and phenol are abundant in thermal and combustion procedures, such as stack gas production, industrial incinerators, metal reclamation, etc., which are key precursors for the formation of polychlorinated naphthalenes (PCNs). CPs and phenol can react with H or OH radicals to form chlorophenoxy radicals (CPRs) and phenoxy radical (PhR). The self-condensation of CPRs or cross-condensation of PhR with CPRs is the initial and most important step for PCN formation. In this work, detailed thermodynamic and kinetic calculations were carried out to investigate the PCN formation mechanisms from PhR with 2-CPR/3-CPR. Several energetically advantageous formation pathways were obtained. The rate constants of key elementary steps were calculated over 600~1200 K using the canonical variational transition-state theory (CVT) with the small curvature tunneling (SCT) contribution method. The mechanisms were compared with the experimental observations and our previous works on the PCN formation from the self-condensation of 2-CPRs/3-CPRs. This study shows that naphthalene and 1-monochlorinated naphthalene (1-MCN) are the main PCN products from the cross-condensation of PhR with 2-CPR, and naphthalene and 2-monochlorinated naphthalene (2-MCN) are the main PCN products from the cross-condensation of PhR with 3-CPR. Pathways terminated with Cl elimination are preferred over those terminated with H elimination. PCN formation from the cross-condensation of PhR with 3-CPR can occur much easier than that from the cross-condensation of PhR with 2-CPR. This study, along with the study of PCN formation from the self-condensation 2-CPRs/3-CPRs, can provide reasonable explanations for the experimental observations that the formation potential of naphthalene is larger than that of 1-MCN using 2-CP as a precursor, and an almost equal yield of 1-MCN and 2-MCN can be produced with 3-CP as a precursor

    Optimization of the Efficient Extraction of Organic Components in Atmospheric Particulate Matter by Accelerated Solvent Extraction Technique and Its Application

    No full text
    Organic components in atmospheric fine particulate matter have attracted much attention and several scientific studies have been performed, although most of the sample extraction methods are time consuming and laborious. Accelerated solvent extraction (ASE) is a new sample extraction method offering number of advantages, such as low extraction cost, reduced solvent and time consumption, and simplified extraction protocols. In order to optimize ASE methods to determine the concentrations of organic compounds in atmospheric fine particulate matter, different parameters were set out for the experiment, and the optimal method was selected according to the recoveries of the standard (i.e., n−alkanes and polycyclic aromatic hydrocarbons (PAHs)). This study also involves a comparison of the optimal method with the traditional method of ultrasonic extraction (USE). In addition, the optimized method was applied to measure the mass concentrations of organic compounds (n−alkanes and PAHs) in fine particulate matter samples collected in Beijing. The findings showed that the average recovery of target compounds using ASE was 96%, with the majority of compounds falling within the confidence levels, and the ASE recoveries and precision were consistent with the USE method tested. Furthermore, ASE combines the advantages of high extraction efficiency, automation, and reduced solvent use. In conclusion, the optimal ASE methods can be used to extract organic components in atmospheric particulate matter and serve as a point of reference for the development of analytical methodologies for assessing organic compounds in atmospheric particulate matter in China
    • …
    corecore