50 research outputs found

    Troponin Mutation Caused Diastolic Dysfunction and Experimental Treatment in Transgenic Mice with Cardiomyopathy

    Get PDF
    Troponin, a contractile protein of the thin filament of striated muscle, consists of three subunits: troponin C (TnC), troponin T (TnT), and troponin I (TnI). Cardiac troponin I (cTnI) plays a critical role in regulation of cardiac function. The physiological effect of cTnI, as an inhibitory subunit of troponin complex, is to prevent the interaction between myosin heavy chain heads and actins, i.e. the cross-bridge formation, and to ensure a proper relaxation of cardiac myofilaments. In pathological conditions, the deficiency of cTnI or mutations in cTnI especially in the C-terminus of cTnI is associated with diastolic dysfunction caused by myofibril hypersensitivity to Ca2+. Our laboratory has generated cTnI knockout mouse model to investigate the cellular and molecular function of cTnI and created cTnI mutant disease mouse models to explore the pathophysiology caused by cTnI mutations in the heart. Here, we present our recent studies on physiological function of cTnI in the heart and the pathological consequences caused by the cTnI mutations in the diseased heart using the transgenic mouse models. The mechanisms underlying diastolic dysfunction and heart failure caused by cTnI mutations are explored in cell-based assays and in transgenic animal models. These studies provide us with useful information in searching for therapeutic strategies and target-oriented medication for the treatment of diastolic dysfunction and heart failure

    Planar Cell Polarity Signaling Pathway in Congenital Heart Diseases

    Get PDF
    Congenital heart disease (CHD) is a common cardiac disorder in humans. Despite many advances in the understanding of CHD and the identification of many associated genes, the fundamental etiology for the majority of cases remains unclear. The planar cell polarity (PCP) signaling pathway, responsible for tissue polarity in Drosophila and gastrulation movements and cardiogenesis in vertebrates, has been shown to play multiple roles during cardiac differentiation and development. The disrupted function of PCP signaling is connected to some CHDs. Here, we summarize our current understanding of how PCP factors affect the pathogenesis of CHD

    Sodium valproate-induced congenital cardiac abnormalities in mice are associated with the inhibition of histone deacetylase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Valproic acid, a widely used anticonvulsant drug, is a potent teratogen resulting in various congenital abnormalities. However, the mechanisms underlying valproic acid induced teratogenesis are nor clear. Recent studies indicate that histone deacetylase is a direct target of valproic acid.</p> <p>Methods</p> <p>In the present study, we have used histological analysis and RT-PCR assays to examine the cardiac abnormalities in mice treated with sodium valproate (NaVP) and determined the effects of NaVP on histone deacetylase activity and the expression of heart development-related genes in mouse myocardial cells.</p> <p>Results</p> <p>The experimental data show that NaVP can induce cardiac abnormalities in fetal mice in a dose-dependent manner. NaVP causes a dose-dependent inhibition of hitone deacetylase (HDAC) activity in mouse myocardial cells. However, the expression levels of HDAC (both HDAC1 and HDAC2) are not significantly changed in fetal mouse hearts after administration of NaVP in pregnant mice. The transcriptional levels of other heart development-related genes, such as CHF1, Tbx5 and MEF2, are significantly increased in fetal mouse hearts treated with NaVP.</p> <p>Conclusions</p> <p>The study indicates that administration of NaVP in pregnant mice can result in various cardiac abnormalities in fetal hearts, which is associated with an inhibition of histone deacetylase without altering the transcription of this enzyme.</p

    Spatiotemporal expression of histone acetyltransferases, p300 and CBP, in developing embryonic hearts

    Get PDF
    Histone acetyltransferases (HATs), p300 and cAMP response element binding protein (CREB)-binding protein (CBP) are two structurally related transcriptional co-activators that activate expression of many eukaryotic genes involved in cellular growth and signaling, muscle differentiation and embryogenesis. However, whether these proteins play important and different roles in mouse cardiogenesis is not clear. Here, we investigate the protein distributions and mRNA expression of the two HATs in embryonic and adult mouse heart during normal heart development by using immunohistochemical and RT-PCR techniques. The data from immunohistochemical experiments revealed that p300 was extensively present in nearly every region of the hearts from embryonic stages to the adulthood. However, no CBP expression was detected in embryonic hearts at day E7.5. CBP expression appeared at the later stages, and the distribution of CBP was less than that of p300. In the developmental hearts after E10.5, both for p300 and CBP, the mRNA expression levels reached a peak on day E10.5, and then were gradually decreased afterwards. These results reveal that both p300 and CBP are related to embryonic heart development. The dynamic expression patterns of these two enzymes during mouse heart development indicate that they may play an important role on heart development. However, there is a difference in spatiotemporal expression patterns between these two enzymes during heart development. The expression of p300 is earlier and more predominate, suggesting that p300 may play a more important role in embryonic heart development especially during cardiac precursor cell induction and interventricular septum formation

    Myofibril-Inducing RNA (MIR) is essential for tropomyosin expression and myofibrillogenesis in axolotl hearts

    Get PDF
    The Mexican axolotl, Ambystoma mexicanum, carries the naturally-occurring recessive mutant gene 'c' that results in a failure of homozygous (c/c) embryos to form hearts that beat because of an absence of organized myofibrils. Our previous studies have shown that a noncoding RNA, Myofibril-Inducing RNA (MIR), is capable of promoting myofibrillogenesis and heart beating in the mutant (c/c) axolotls. The present study demonstrates that the MIR gene is essential for tropomyosin (TM) expression in axolotl hearts during development. Gene expression studies show that mRNA expression of various tropomyosin isoforms in untreated mutant hearts and in normal hearts knocked down with double-stranded MIR (dsMIR) are similar to untreated normal. However, at the protein level, selected tropomyosin isoforms are significantly reduced in mutant and dsMIR treated normal hearts. These results suggest that MIR is involved in controlling the translation or post-translation of various TM isoforms and subsequently of regulating cardiac contractility
    corecore