49 research outputs found

    Functional Analysis of the Kinome of the Wheat Scab Fungus Fusarium graminearum

    Get PDF
    As in other eukaryotes, protein kinases play major regulatory roles in filamentous fungi. Although the genomes of many plant pathogenic fungi have been sequenced, systematic characterization of their kinomes has not been reported. The wheat scab fungus Fusarium graminearum has 116 protein kinases (PK) genes. Although twenty of them appeared to be essential, we generated deletion mutants for the other 96 PK genes, including 12 orthologs of essential genes in yeast. All of the PK mutants were assayed for changes in 17 phenotypes, including growth, conidiation, pathogenesis, stress responses, and sexual reproduction. Overall, deletion of 64 PK genes resulted in at least one of the phenotypes examined, including three mutants blocked in conidiation and five mutants with increased tolerance to hyperosmotic stress. In total, 42 PK mutants were significantly reduced in virulence or non-pathogenic, including mutants deleted of key components of the cAMP signaling and three MAPK pathways. A number of these PK genes, including Fg03146 and Fg04770 that are unique to filamentous fungi, are dispensable for hyphal growth and likely encode novel fungal virulence factors. Ascospores play a critical role in the initiation of wheat scab. Twenty-six PK mutants were blocked in perithecia formation or aborted in ascosporogenesis. Additional 19 mutants were defective in ascospore release or morphology. Interestingly, F. graminearum contains two aurora kinase genes with distinct functions, which has not been reported in fungi. In addition, we used the interlog approach to predict the PK-PK and PK-protein interaction networks of F. graminearum. Several predicted interactions were verified with yeast two-hybrid or co-immunoprecipitation assays. To our knowledge, this is the first functional characterization of the kinome in plant pathogenic fungi. Protein kinase genes important for various aspects of growth, developmental, and infection processes in F. graminearum were identified in this study

    Magma Sources and Tectonic Settings of Concealed Intrusive Rocks in the Jinchang Ore District, Yanbian–Dongning Region, Northeast China: Zircon U–Pb Geochronological, Geochemical, and Hf Isotopic Evidence

    No full text
    The Jinchang deposit is a large Au deposit in the Yanbian–Dongning region, in Northeast China, and is the product of magmatic–hydrothermal activities related to Early Cretaceous concealed igneous intrusions. However, these Early Cretaceous ore-causative igneous intrusions and the ore-hosting rocks in the Jinchang ore district have rarely been studied, with their magma sources and tectonic settings being ambiguous. Here, we integrate new geochemical, zircon U–Pb and Hf isotopic data from the concealed ore-hosting monzogranite and the ore-causative granodiorite to constrain their magma sources and tectonic settings. Zircon U–Pb dating indicates that the two monzogranites from the drill holes JIZKN01 and J18ZK0303 have similar crystallization ages of 202.0 ± 1.6 and 200.9 ± 1.2 Ma, respectively, whereas the granodiorite from the drill hole JXI-1ZK1001 was formed in the Early Cretaceous period (107.0 ± 3.0 Ma). They are all enriched in large-ion lithophile elements (e.g., Rb, Th, and K) and light rare-earth elements, depleted in high field strength elements (e.g., Nb, Ta, and Ti) and heavy rare-earth elements, and yield similar positive εHf(t) values of +4.4 to +11.5, with their two-stage model ages ranging from 799 to 389 Ma. These results indicate that the concealed Early Jurassic ore-hosting monzogranite was derived from the partial melting of the Neoproterozoic–Paleozoic continental crust in a continental arc setting related to the Paleo-Pacific subduction. The ore-causative granodiorite originated from the partial melting of both the mantle wedge and the overlying continental crust, most likely caused by the dehydration and metasomatism of the subducted Paleo-Pacific slab involved in the rollback in the Early Cretaceous period

    Facile Synthesis of Carbon Nanospheres with High Capability to Inhale Selenium Powder for Electrochemical Energy Storage

    No full text
    Carbon–selenium composite positive electrode (CSs@Se) is engineered in this project using a melt diffusion approach with glucose as a precursor, and it demonstrates good electrochemical performance for lithium–selenium batteries. X-ray diffraction (XRD) and scanning electron microscopy (SEM) with EDS analysis are used to characterize the newly designed CSs@Se electrode. To complete the evaluation, electrochemical characterization such as charge–discharge (rate performance and cycle stability), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) tests are done. The findings show that selenium particles are distributed uniformly in mono-sized carbon spheres with enormous surface areas. Furthermore, the charge–discharge test demonstrates that the CSs@Se cathode has a rate performance of 104 mA h g−1 even at current density of 2500 mA g−1 and can sustain stable cycling for 70 cycles with a specific capacity of 270 mA h g−1 at current density of 25 mA g−1. The homogeneous diffusion of selenium particles in the produced spheres is credited with an improved electrochemical performance

    A Systematic Review and Meta-Analysis: Lactobacillus acidophilus for Treating Acute Gastroenteritis in Children

    No full text
    The efficacy of probiotic strains of Lactobacillus acidophilus to manage acute gastroenteritis in children is still not established. We searched the Cochrane Library, PubMed, EMBASE, and three Chinese literature databases (CNKI, WanFang, and CBM) from their inception to February 2021 for RCTs that compared the use of Lactobacillus acidophilus with no Lactobacillus acidophilus. The grey literature was searched through Google Scholar. Authors of the original papers were contacted for additional data. The study included a total of 15 RCTs involving 1765 patients. Compared with placebo or no treatment, Lactobacillus acidophilus was associated with a reduced duration of diarrhea (moderate quality of evidence), but the effect was not statistically significant when only the individual probiotic strain was provided. Lactobacillus acidophilus was effective when used at a daily dose ≥ 109 CFU. There was no difference in the effect of Lactobacillus acidophilus on diarrhea duration among Asian, European, or American countries. Lactobacillus acidophilus reduced the frequency of diarrhea on day 2 to day 5. However, it was statistically significant on day 3. When administered at a dosage of more than 109 CFU to children with acute gastroenteritis, moderate- to low-quality data showed that Lactobacillus acidophilus reduced the duration of diarrhea and conferred a benefit for frequency of diarrhea

    Covalent polyphenol with soybean 11S protein to develop hypoallergenic conjugates for potential immunotherapy

    No full text
    Soybean 11S globulin is one of the most important allergens in soybean. This study investigated the effects of 11S covalent that conjugated covalently with (−)-Epigallo-catechin 3-gallate (EGCG) and chlorogenic acid (CHA) on protein structure, digestibility, and allergenicity. 11S conjugation with EGCG and CHA yielded covalent conjugates and formed cross-linked protein polymers, which changed the structures and increased the digestibility of the protein. In vitro experiments showed that the ability of IgE binding, and stimulation mast cell degranulation were lower for11S-EGCG and 11S-CHA conjugates compared to 11S. In vivo experiments showed that conjugation of EGCG and CHA reduced the allergenicity of 11S. The oral tolerance model showed that hypoallergenic 11S-EGCG conjugates successfully relieved allergic symptoms and induced oral tolerance by affecting antigen presentation, activating Treg cells to produce IL-10, and promoting Th1/Th2 immune balance. This study presented an innovative strategy to develop hypoallergenic food production that induce tolerance for allergen-specific immunotherapy

    Application of ionic liquids in CO2 capture and electrochemical reduction: A review

    No full text
    As a new type of green solvent with non-volatility, high thermal stability, high conductivity and various adjustable properties, ionic liquid (IL) has been widely used in the capture and electrochemical reduction of carbon dioxide (CO2). To date, many studies have been made to investigate CO2 capture by using different types of ILs and CO2 electrochemical reduction (CO2ER) with ILs as either electrolyte or other catalytic active components. Some structure–activity relationships between the structure and adsorption or catalytic properties of ILs have been found. Herein, the absorption performances and mechanisms of conventional ILs, amino-functionalized ILs, non-amino functionalized ILs and supported ILs for CO2 capture, as well as the performances and action mechanisms of ILs as the electrolyte, electrolyte additive, and/or electrode modifier in the process of CO2ER are summarized. Many researches indicate that the unique interaction between the anion or cation of IL and CO2 has a significant contribution to promote the absorption and conversion of CO2. However, the ILs used for CO2 capture and electrochemical reduction should be further explored. Especially, a more in-depth investigation of the adsorption and catalytic mechanisms with the help of quantum chemical calculation, molecular simulation, and in situ characterization techniques is necessary. It is expected to design and develop more efficient ILs used for CO2 capture and conversion on a large scale

    The complete chloroplast genome of Sargassum fusiforme

    No full text
    The complete chloroplast genome sequence of Sargassum fusiforme is presented here. Circular mapping revealed that the complete chloroplast DNA sequence of S. fusiforme was 124,298 bp in length and had an overall AT content of 69.57%, including 137 protein-coding genes, 2 open reading frames, 28 transfer RNA genes, and 6 ribosomal RNA genes. The phylogenetic tree based on Bayesian shows that all kinds of Phaeophyceae were clustered into two monophyletic groups

    Hydrothermal Synthesized CoS<sub>2</sub> as Efficient Co-Catalyst to Improve the Interfacial Charge Transfer Efficiency in BiVO<sub>4</sub>

    No full text
    The bare surface of BiVO4 photoanode usually suffers from extremely low interfacial charge transfer efficiency which leads to a significantly suppressed photoelectrochemical water splitting performance. Various strategies, including surface modification and the loading of co-catalysts, facilitate the interface charge transfer process in BiVO4. In this study, we demonstrate that CoS2 synthesized from the hydrothermal method can be used as a high-efficient co-catalyst to sufficiently improve the interface charge transfer efficiency in BiVO4. The photoelectrochemical water splitting performance of BiVO4 was significantly improved after CoS2 surface modification. The BiVO4/CoS2 photoanode achieved an excellent photocurrent density of 5.2 mA/cm2 at 1.23 V versus RHE under AM 1.5 G illumination, corresponding to a 3.7 times enhancement in photocurrent compared with bare BiVO4. The onset potential of the BiVO4/CoS2 photoanode was also negatively shifted by 210 mV. The followed systematic combined optical and electrochemical characterization results reveal that the interfacial charge transfer efficiency of BiVO4 was largely improved from less than 20% to more than 70% due tor CoS2 surface modification. The further surface carrier dynamics study performed using an intensity modulated photocurrent spectroscopy displayed a 6–10 times suppression in surface recombination rate constants for CoS2 modified BiVO4, which suggests that the key reason for the improved interfacial charge transfer efficiency possibly originates from the passivated surface states due to the coating of CoS2
    corecore