932 research outputs found
Recommended from our members
Digital Frontiers' Social Media and Digital Communities Roundtable and Questions of Belonging
This response paper is for Dr. Jennifer Way's graduate art history seminar on 20th-21st century art. Students in Way's seminar attended 'Social Media and Digital Communities: A Roundtable Discussion,' a session featured at the Digital Frontiers 2012 conference. Way charged her students with writing a short paper to explore connections between the roundtable and their seminar studies. What follows is a short paper by graduate student, XuHao Yang
Attribute-Aware Deep Hashing with Self-Consistency for Large-Scale Fine-Grained Image Retrieval
Our work focuses on tackling large-scale fine-grained image retrieval as
ranking the images depicting the concept of interests (i.e., the same
sub-category labels) highest based on the fine-grained details in the query. It
is desirable to alleviate the challenges of both fine-grained nature of small
inter-class variations with large intra-class variations and explosive growth
of fine-grained data for such a practical task. In this paper, we propose
attribute-aware hashing networks with self-consistency for generating
attribute-aware hash codes to not only make the retrieval process efficient,
but also establish explicit correspondences between hash codes and visual
attributes. Specifically, based on the captured visual representations by
attention, we develop an encoder-decoder structure network of a reconstruction
task to unsupervisedly distill high-level attribute-specific vectors from the
appearance-specific visual representations without attribute annotations. Our
models are also equipped with a feature decorrelation constraint upon these
attribute vectors to strengthen their representative abilities. Then, driven by
preserving original entities' similarity, the required hash codes can be
generated from these attribute-specific vectors and thus become
attribute-aware. Furthermore, to combat simplicity bias in deep hashing, we
consider the model design from the perspective of the self-consistency
principle and propose to further enhance models' self-consistency by equipping
an additional image reconstruction path. Comprehensive quantitative experiments
under diverse empirical settings on six fine-grained retrieval datasets and two
generic retrieval datasets show the superiority of our models over competing
methods.Comment: Accepted by IEEE TPAM
Vertical distribution of Fe, P and correlation with organic carbon in coastal sediments of Yellow Sea, Eastern China
The coastal zone is considered as a major carbon pool. Iron minerals and phosphates are vital factors affecting the amounts and occurrence of total organic carbon (TOC) in sediments. However, coupling mechanisms of iron (Fe) and phosphorous (P) in the source-sink transition of TOC in coastal sediments is poorly understood. This study characterized the distribution of Fe, P and TOC contents of three independent 170 cm sediment cores sampled from a coastal aquaculture area in the eastern Jiangsu Province, and quantified the correlations among Fe, P, median grain diameter (Dx(50)), and TOC. The results showed total phosphorus (TP) content ranges in a scope of 337.4-578.0 mg/kg, and many depths recorded moderate P eutrophication. Inorganic phosphorus (DA + IP) and biogenic apatite were the primary components of TP, accounting for 25.19–55.00 and 26.71–49.62%, respectively. The Fe contents varied from 987.9 mg/kg to 2900.7 mg/kg, in which oxidized iron (Feox) accounted for about 62.2–79.4%. In the vertical profile, the TOC was positively correlated with the contents of low-crystallinity Fe-bearing carbonates (Fecarb), high crystallinity pyrite (FePy), iron-bound phosphorus (PCDB), manganeses (Mn), and nitrogen (N), while it was negatively correlated with DA + IP, organic phosphorus (OP), and Dx(50). Based on the the partial least squares (PLS) model, we proposed that the higher FePy, Mn, magnetite (FeMag), Fecarb, PCDB, amorphous exchangeable Fe (Ex-Fe), and authigenic apatite phosphorus (Bio-P) in sediments represent the high capacity for TOC sink, whereas, higher DA + IP, and OP indicate a TOC conversion to the source. The non-siginificat indication of Feox on TOC source-sink is due to its surplus and strong reactivity relative to TOC content. These revealed correlations provide a theoretical reference for understanding and regulating the burial rate and storage of TOC by changing the input of Fe minerals and P components into coastal sediments
Infrared Imaging of Magnetic Octupole Domains in Non-collinear Antiferromagnets
Magnetic structure plays a pivotal role in the functionality of
antiferromagnets (AFMs), which not only can be employed to encode digital data
but also yields novel phenomena. Despite its growing significance, visualizing
the antiferromagnetic domain structure remains a challenge, particularly for
non-collinear AFMs. Currently, the observation of magnetic domains in
non-collinear antiferromagnetic materials is feasible only in MnSn,
underscoring the limitations of existing techniques that necessitate distinct
methods for in-plane and out-of-plane magnetic domain imaging. In this study,
we present a versatile method for imaging the antiferromagnetic domain
structure in a series of non-collinear antiferromagnetic materials by utilizing
the anomalous Ettingshausen effect (AEE), which resolves both the magnetic
octupole moments parallel and perpendicular to the sample surface. Temperature
modulation due to the AEE originating from different magnetic domains is
measured by the lock-in thermography, revealing distinct behaviors of octupole
domains in different antiferromagnets. This work delivers an efficient
technique for the visualization of magnetic domains in non-collinear AFMs,
which enables comprehensive study of the magnetization process at the
microscopic level and paves the way for potential advancements in applications.Comment: National Science Review in pres
Hyperconnectivity of the lateral amygdala in long-term methamphetamine abstainers negatively correlated with withdrawal duration
Introduction: Several studies have reported structural and functional abnormalities of the amygdala caused by methamphetamine addiction. However, it is unknown whether abnormalities in amygdala function persist in long-term methamphetamine abstainers.Methods: In this study, 38 long-term male methamphetamine abstainers (>12 months) and 40 demographically matched male healthy controls (HCs) were recruited. Considering the heterogeneous nature of the amygdala structure and function, we chose 4 amygdala subregions (i.e., left lateral, left medial, right lateral, and right medial) as regions of interest (ROI) and compared the ROI-based resting-state functional connectivity (FC) at the whole-brain voxel-wise between the two groups. We explored the relationship between the detected abnormal connectivity, methamphetamine use factors, and the duration of withdrawal using correlation analyses. We also examined the effect of methamphetamine use factors, months of withdrawal, and sociodemographic data on detected abnormal connectivity through multiple linear regressions.Results: Compared with HCs, long-term methamphetamine abstainers showed significant hyperconnectivity between the left lateral amygdala and a continuous area extending to the left inferior/middle occipital gyrus and left middle/superior temporal gyrus. Abnormal connections negatively correlated with methamphetamine withdrawal time (r = −0.85, p < 0.001). The linear regression model further demonstrated that the months of withdrawal could identify the abnormal connectivity (βadj = −0.86, 95%CI: −1.06 to −0.65, p < 0.001).Discussion: The use of methamphetamine can impair the neural sensory system, including the visual and auditory systems, but this abnormal connectivity can gradually recover after prolonged withdrawal of methamphetamine. From a neuroimaging perspective, our results suggest that withdrawal is an effective treatment for methamphetamine
NtMYB4 and NtCHS1 Are Critical Factors in the Regulation of Flavonoid Biosynthesis and Are Involved in Salinity Responsiveness
High levels of salinity induce serious oxidative damage in plants. Flavonoids, as antioxidants, have important roles in reactive oxygen species (ROS) scavenging. In the present study, the tobacco R2R3 MYB type repressor, NtMYB4, was isolated and characterized. The expression of NtMYB4 was suppressed by salinity. Overexpression of NtMYB4 reduced the salt tolerance in transgenic tobacco plants. NtMYB4 repressed the promoter activity of NtCHS1 and negatively regulated its expression. Rutin accumulation was significantly decreased in NtMYB4 overexpressing transgenic plants and NtCHS1 RNAi silenced transgenic plants. Moreover, high H2O2 and O2− contents were detected in both types of rutin-reduced transgenic plants under high salt stress. In addition, exogenous rutin supplementation effectively scavenged ROS (H2O2 and O2−) and improved the salt tolerance of the rutin-reduced transgenic plants. In contrast, NtCHS1 overexpressing plants had increased rutin accumulation, lower H2O2 and O2− contents, and higher tolerance to salinity. These results suggested that tobacco NtMYB4 acts as a salinity response repressor and negatively regulates NtCHS1 expression, which results in the reduced flavonoid accumulation and weakened ROS-scavenging ability under salt stress
Observation of many-body Fock space dynamics in two dimensions
Quantum many-body simulation provides a straightforward way to understand
fundamental physics and connect with quantum information applications. However,
suffering from exponentially growing Hilbert space size, characterization in
terms of few-body probes in real space is often insufficient to tackle
challenging problems such as quantum critical behavior and many-body
localization (MBL) in higher dimensions. Here, we experimentally employ a new
paradigm on a superconducting quantum processor, exploring such elusive
questions from a Fock space view: mapping the many-body system onto an
unconventional Anderson model on a complex Fock space network of many-body
states. By observing the wave packet propagating in Fock space and the
emergence of a statistical ergodic ensemble, we reveal a fresh picture for
characterizing representative many-body dynamics: thermalization, localization,
and scarring. In addition, we observe a quantum critical regime of anomalously
enhanced wave packet width and deduce a critical point from the maximum wave
packet fluctuations, which lend support for the two-dimensional MBL transition
in finite-sized systems. Our work unveils a new perspective of exploring
many-body physics in Fock space, demonstrating its practical applications on
contentious MBL aspects such as criticality and dimensionality. Moreover, the
entire protocol is universal and scalable, paving the way to finally solve a
broader range of controversial many-body problems on future larger quantum
devices.Comment: 8 pages, 4 figures + supplementary informatio
- …