7 research outputs found

    Clinical application of superselective transarterial embolization of renal tumors in zero ischaemia robotic-assisted laparoscopic partial nephrectomy

    Get PDF
    ObjectiveTo assess the feasibility and safety of zero ischaemia robotic-assisted laparoscopic partial nephrectomy (RALPN) after preoperative superselective transarterial embolization (STE) of T1 renal cancer.MethodsWe retrospectively analyzed the data of 32 patients who underwent zero ischaemia RALPN after STE and 140 patients who received standard robot-assisted laparoscopic partial nephrectomy (S-RALPN). In addition, we selected 35 patients treated with off-clamp RALPN (O-RALPN) from September 2017 to March 2022 for comparison. STE was performed by the same interventional practitioner, and zero ischaemia laparoscopic partial nephrectomy (LPN) was carried out by experienced surgeon 1-12 hours after STE. The intraoperative data and postoperative complications were recorded. The postoperative renal function, routine urine test, urinary Computed Tomography (CT), and preoperative and postoperative glomerular filtration rate (GFR) data were analyzed.ResultsAll operations were completed successfully. There were no cases of conversion to opening and no deaths. The renal arterial trunk was not blocked. No blood transfusions were needed. The mean operation time was 91.5 ± 34.28 minutes. The mean blood loss was 58.59 ± 54.11 ml. No recurrence or metastasis occurred.ConclusionFor patients with renal tumors, STE of renal tumors in zero ischaemia RALPN can preserve more renal function, and it provides a safe and feasible surgical method

    LINC00482 sponged miR-2467-3p to promote bone metastasis of prostate cancer through activating Wnt/β-catenin signaling pathway

    No full text
    This study was designed to investigate the biological functions of LINC00482 in prostate cancer (PCa) with bone metastasis. TCGA dataset of PCa was applied for LINC00482 expression analysis and real time PCR was used to verify the expression level of LINC00482 in PCa tissues as well as PCa bone metastatic tissues. To detect the biological functions of LINC00482 in vitro, various assays were used including CCK-8, EdU, colony formation and transwell assays. The biological functions of LINC00482 were also identified in vivo by inoculating PCa cells into the left cardiac ventricle of mice, followed by evaluating the osteolytic lesions and osteolytic score. In addition, Starbase and Lncbase databases were applied for predicting the potential target miRNA of LINC00482, while TargetScan and Starbase databases were used for predicting the potential target of miRNA. The luciferase reporter assay was utilized to determine the interactions among these molecules and western blotting was employed to verified the targeted proteins. Results showed that high expression level of LINC00482 was observed in bone metastatic PCa tissues and associated with PCa progression. Silencing of LINC00482 inhibited cell proliferation, migration and invasion in PCa. Furthermore, LINC00482 was proved to act as a competing endogenous RNA by sponging miR-2467-3p to activate Wnt/β-catenin signaling pathway, which may be a promising therapeutic target for PCa with bone metastasis
    corecore