60 research outputs found
Airway Management During Anesthetic Induction of Secondary Laryngectomy for Recurrent Laryngeal Cancer: Three Cases of Report and Analysis
Surgery for laryngeal cancer and the following recurrent tumor growth may further change the anatomy of the airway. Airway management during anesthesia induction is challenging for the patients undergoing secondary surgery due to recurrence of laryngeal cancer or its postoperative complication, but it has never been reported. In this report, we described three cases of anesthetic induction which had different process of airway events. The first case was given intravenous general anesthetic for induction and experienced failed intubation, difficult mask ventilation and emergent tracheostomy, eventually were rescued successfully. The second case presented a fixed metastatic mass about 6 cm diameter upon the primary surgical scar of incision and preoperative apnea, underwent fibroscopy-guided conscious intubation and the process was uneventful. The third case had erythema and swelling under the mandible with erupted ulcer as well as neck immobility due to recurrent tumor. The anesthesiologist attempted fibroscopy-guided intubation via nasal passage with a tracheal tube in 2.8 mm diameter but it was failed. Subsequently, tracheostomy was performed under bilateral superficial cervical plexus block and the dissected larynx by operation verified distorted structure of glottis with S-shaped stenosis. This report concludes that, during the anesthetic induction for this special type of surgery, a detailed and comprehensive evaluation of the airway, and a routine fibroscopic examination are especially important
Raw data of GCMS, Orbitrap MS and FT-ICR MS
The Raw data of GCMS, Orbitrap MS and FT-ICR M
Raw data of GCMS, Orbitrap MS and FT-ICR MS
The Raw data of GCMS, Orbitrap MS and FT-ICR M
Lung ultrasound: Predictor of acute respiratory distress syndrome in intensive care unit patients
Purpose: The purpose of the study was to review and summarize current literature concerning the validation and application of lung ultrasound (LUS) in critically ill patients with acute respiratory distress syndrome (ARDS).
Materials and Methods: An extensive literature search was conducted using PubMed, Cochrane Review, Google Scholar, and Ohio State University Link based on the question if LUS should be considered a reliable investigational technique for ARDS diagnosis, treatment, and prognosis in pediatric and adult population.
Results: LUS has been successfully validated for facilitating early diagnosis and diagnosis of simultaneous lung conditions, predicting lung recruitment treatment effect, and evaluating the prognosis in ARDS patients. Whether lung US is a useful tool in the prediction of prone position and oxygenation response in patients with ARDS is conflicting.
Conclusions: LUS is a noninvasive, radiation-free, cheap, and easy to perform tool for critically ill patients with ARDS and might be a promising technique used in the Intensive Care Unit for ARDS management
Data from: Molecular characterization of aldehydes and ketones in particle phase of mainstream and sidestream cigarette smoke
Aldehydes and ketones (AKs) in cigarette smoke are risk to humans and environment. Due to the complexity of itself and the interference of the smoke tar matrix, the aldehydes and ketones in particle phase (AKPs) of mainstream smoke (MSS) and sidestream smoke (SSS) have not been well investigated. In this study, the AKPs of MSS and SSS were derivatized into polar products by reaction with Girard T reagent. The derivatives were isolated rapidly by column chromatography and analysed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Fifteen species of aldehydes and ketones were detected by positive ion electrospray ionization (ESI) FT-ICR MS: O1–6, N1O1–4, N2O1–3 and N3O2–3. The total number of AKPs obtained by ESI FT-ICR MS in MSS and SSS is about 1100 and 970, respectively. After hydrolysis, the original AKPs were obtained and 63 carbonyls were identified and quantified by gas chromatography–mass spectrometry (GCMS). The nitrogen-containing and high-oxygen AKPs were further characterized by Orbitrap mass spectrometry. Structures of compounds with high relative abundance in the mass spectrum were speculated (e.g. a series of degradants of cembrenediol) by comparison with the results of GCMS
Data from: Molecular characterization of aldehydes and ketones in particle phase of mainstream and sidestream cigarette smoke
Aldehydes and ketones (AKs) in cigarette smoke are risk to humans and environment. Due to the complexity of itself and the interference of the smoke tar matrix, the aldehydes and ketones in particle phase (AKPs) of mainstream smoke (MSS) and sidestream smoke (SSS) have not been well investigated. In this study, the AKPs of MSS and SSS were derivatized into polar products by reaction with Girard’s T reagent. The derivatives were isolated rapidly by column chromatography and analyzed by Fourier transform ion transform cyclotron resonance mass spectrometry (FT-ICR MS). Fifteen species of aldehydes and ketones were detected by positive ion electrospray ionization (ESI) FT-ICR MS: O1-6, N1O1-4, N2O1-3 and N3O2-3. The total number of AKPs obtained by ESI FTICR MS in MSS and SSS is about 1100 and 970, respectively. After hydrolysis, the original AKPs were obtained and 63 carbonyls were identified and quantified by gas chromatography-mass spectrometry (GCMS). The Nitrogen-containing and high-oxygen AKPs were further characterized by Orbitrap mass spectrometry. Structures of compounds with high relative abundance in the mass spectrum were speculated (e.g., a series of degradants of cembrenediol) by comparison with the results of GCMS
- …