159 research outputs found
Effectiveness of Nurse-led Educational Interventions on Glycemic Control and Self-care Behaviors of Type 2 Diabetics: A Systematic Review
Background: Blood glucose control is challenging for patients with diabetes and is often associated with self-care behaviors. The effectiveness of nurse-led educational interventions for glycemic control and self-care behaviors in patients with type 2 diabetes is unclear.Objective: To determine effectiveness of nurse-led educational intervention on glycemic control and self-care behaviors in patients with type 2 diabetes.Design: Mixed methods systematic review.Data Sources: A comprehensive search in Medline, CINAHL and Scopus was conducted in February 2023 to identify peer-reviewed papers published between 2003 and 2023.Review Methods: The review was guided by the Joanna Briggs Institute systematic review manual. Data were extracted and assessed by two evaluators using a standardized checklist. Due to the high level of heterogeneity between studies, the data were analyzed using Popay et al.'s (2006) conduct of narrative synthesis in systematic reviews.Results: Ten randomized controlled trials met the inclusion criteria. Studies described nurse-led educational interventions delivered either face-to-face or online. The outcomes of the educational interventions and the measurement tools used were diverse, with many studies reporting attrition. Most studies reported that nurse-led educational interventions improved outcomes for patients with type 2 diabetes.Conclusions: The evidence identifies that nurse-led educational interventions are effective for glycemic control and self-care behaviors in patients with type 2 diabetes. This review demonstrates evidence of approaches that could inform future practice and research to support all adult populations of patients with type 2 diabetes to improve glucose control and self-care behaviors. Future research would benefit from well-designed clinical trials that use common outcome measures to provide more information about the effectiveness as well as the sustainability of such interventions
The Trend of Scientific and Refinement of Financial Management in Business Units
In the new era, financial management has become increasingly sophisticated and has had a significant impact and change on various industries and fields. This paper analyzes the key significance of performance appraisal in institutions and proposes ways to enhance performance appraisal innovation, which will prevail in financial management innovation in institutions and upgrade the value of its applications
The interactions of single-wall carbon nanohorns with polar epithelium
Single-wall carbon nanohorns (SWCNHs), which have multitudes of horn interstices, an extensive surface area, and a spherical aggregate structure, offer many advantages over other carbon nanomaterials being used as a drug nanovector. The previous studies on the interaction between SWCNHs and cells have mostly emphasized on cellular uptake and intracellular trafficking, but seldom on epithelial cells. Polar epithelium as a typical biological barrier constitutes the prime obstacle for the transport of therapeutic agents to target site. This work tried to explore the permeability of SWCNHs through polar epithelium and their abilities to modulate transcellular transport, and evaluate the potential of SWCNHs in drug delivery. Madin-Darby canine kidney (MDCK) cell monolayer was used as a polar epithelial cell model, and as-grown SWCNHs, together with oxidized and fluorescein isothiocyanate-conjugated bovine serum albumin-labeled forms, were constructed and comprehensively investigated in vitro and in vivo. Various methods such as transmission electron microscopy and confocal imaging were used to visualize their intracellular uptake and localization, as well as to investigate the potential transcytotic process. The related mechanism was explored by specific inhibitors. Additionally, fast multispectral optoacoustic tomography imaging was used for monitoring the distribution and transport process of SWCNHs in vivo after oral administration in nude mice, as an evidence for their interaction with the intestinal epithelium. The results showed that SWCNHs had a strong bioadhesion property, and parts of them could be uptaken and transcytosed across the MDCK monolayer. Multiple mechanisms were involved in the uptake and transcytosis of SWCNHs with varying degrees. After oral administration, oxidized SWCNHs were distributed in the gastrointestinal tract and retained in the intestine for up to 36 h probably due to their surface adhesion and endocytosis into the intestinal epithelium. Overall, this comprehensive investigation demonstrated that SWCNHs can serve as a promising nanovector that can cross the barrier of polar epithelial cells and deliver drugs effectively
Preliminary study of regulation technology of wind field distribution on QTT site based on test of equivalent wind field
The effect of wind gust on the large reflector antenna is one of the main factors that can affect the antenna performance and therefore, this effect must be minimized to meet the strict performance requirement in the world largest steerable telescope, which is QiTai Telescope (QTT). In this paper, the characteristics of the topography as well as the wind distribution around QTT site have been analyzed and consequently, a technology for improving the wind distribution in an active way has been proposed. Additionally, an equivalent wind distribution test rig for the proposed technology has been built in the lab and the corresponding experiment has been carried out. The experimental data indicated that the proposed technology was a promising tool for regulating the wind distribution for the large reflector antenna and it was found that the proposed technology can significantly reduce the wind speed as well as the wind impact range after the wind regulation has been given in the test. The results in this paper has provided a solid foundation for the regulation of the wind distribution of the QTT site
Recommended from our members
Development of Multinuclear Polymeric Nanoparticles as Robust Protein Nanocarriers
One limitation of current biodegradable polymeric nanoparticles is their inability to effectively encapsulate and sustainably release proteins while maintaining protein bioactivity. Here we report the engineering of a PLGA-polycation nanoparticle platform with core-shell structure as a robust vector for the encapsulation and delivery of proteins and peptides. We demonstrate that the optimized nanoparticles can load high amounts of proteins (>20% of nanoparticles by weight) in aqueous solution by simple mixing via electrostatic interactions without organic solvents, forming nanospheres in seconds with diameter <200 nm. We also investigate the relationship between nanosphere size, surface charge, PLGA-polycation composition, and protein loading. The stable nanosphere complexes contain multiple PLGA-polycation nanoparticles, surrounded by large amounts of protein. This study highlights a novel nanoparticle platform and nanotechnology strategy for the delivery of proteins and other relevant molecules
Multiomics analysis of a resistant European turnip ECD04 during clubroot infection reveals key hub genes underlying resistance mechanism
The clubroot disease has become a worldwide threat for crucifer crop production, due to its soil-borne nature and difficulty to eradicate completely from contaminated field. In this study we used an elite resistant European fodder turnip ECD04 and investigated its resistance mechanism using transcriptome, sRNA-seq, degradome and gene editing. A total of 1751 DEGs were identified from three time points after infection, among which 7 hub genes including XTH23 for cell wall assembly and two CPK28 genes in PTI pathways. On microRNA, we identified 17 DEMs and predicted 15 miRNA-target pairs (DEM-DEG). We validated two pairs (miR395-APS4 and miR160-ARF) by degradome sequencing. We investigated the miR395-APS4 pair by CRISPR-Cas9 mediated gene editing, the result showed that knocking-out APS4 could lead to elevated clubroot resistance in B. napus. In summary, the data acquired on transcriptional response and microRNA as well as target genes provide future direction especially gene candidates for genetic improvement of clubroot resistance on Brassica species
Association between mobile phone addiction, sleep disorder and the gut microbiota: a short-term prospective observational study
Bidirectional communication between the gut microbiota and the brain has sparked interest in exploring the link between mobile phone addiction (MPA) and sleep disorders (SD) in microbiome research. However, investigating the role of gut microbiota in this relationship using animal models presents challenges due to the unique nature of MPA, and human research in this area is scarce. We recruited 99 healthy college students to evaluate the gut microbiome using 16S rRNA gene amplicon sequencing and assess MPA and SD at baseline and after a two-month follow-up. Multiple covariate-adjusted statistical models, including linear regression, permutational multivariate analysis of variance and so on, were employed to determine microbiome associations with MPA at baseline and changes in SD at follow-up. Our findings revealed negative associations between MPA and three alpha diversity metrics, along with alterations in bacterial composition. MPA showed negative associations with the relative abundance of Bacteroidetes, while displaying positive associations with Actinobacteria and Bifidobacteriales. Conversely, Actinobacteria exhibited a negative association with increased SD. This study has established a significant link between MPA and a decrease in the alpha diversity of the gut microbiota. Actinobacteria was associated with MPA and SD, respectively. Additional investigation is needed to fully comprehend the relationship between comorbid behavioral disorders and the gut microbiota
High Prevalence of Extended-Spectrum Beta Lactamases among Salmonella enterica Typhimurium Isolates from Pediatric Patients with Diarrhea in China
We investigated the extended-spectrum beta lactamases among 62 Salmonella enterica Typhimurium isolates recovered from children with diarrhea in a Chinese pediatric hospital. A large proportion of S. enterica Typhimurium isolates were resistant to multiple antimicrobial agents, including ampicillin (90.3%), tetracycline (80.6%), trimethoprim/sulfamethoxazole (74.2%), chloramphenicol (66.1%), cefotaxime (27.4%). Forty-nine (79.0%) of S. enterica Typhimurium isolates were positive for blaTEM-1b and resistant to ampicillin. Thirteen S. enterica Typhimurium isolates (21.0%) were positive for blaCTX-M-1-group and blaCTX-M-9-group, and all isolates harboring blaCTX-M genes were positive for ISEcp1. Two main clones (PFGE type A and D) accounted for nearly 70% of S. enterica Typhimurium isolates, and 7 CTX-M-producing isolates belonged to PFGE type D. Collectively, our data reveal multi-drug resistance and a high prevalence of extended spectrum beta lactamases among S. enterica Typhimurium isolates from children in China. In addition, we report the first identification of blaCTX-M-55 within Salmonella spp. Our data also suggest that clonal spread is responsible for the dissemination of S. enterica Typhimurium isolates
- …