135 research outputs found

    A Quick and Parallel Analytical Method Based on Quantum Dots Labeling for ToRCH-Related Antibodies

    Get PDF
    Quantum dot is a special kind of nanomaterial composed of periodic groups of II–VI, III–V or IV–VI materials. Their high quantum yield, broad absorption with narrow photoluminescence spectra and high resistance to photobleaching, make them become a promising labeling substance in biological analysis. Here, we report a quick and parallel analytical method based on quantum dots for ToRCH-related antibodies including Toxoplasma gondii, Rubella virus, Cytomegalovirus and Herpes simplex virus type 1 (HSV1) and 2 (HSV2). Firstly, we fabricated the microarrays with the five kinds of ToRCH-related antigens and used CdTe quantum dots to label secondary antibody and then analyzed 100 specimens of randomly selected clinical sera from obstetric outpatients. The currently prevalent enzyme-linked immunosorbent assay (ELISA) kits were considered as “golden standard” for comparison. The results show that the quantum dots labeling-based ToRCH microarrays have comparable sensitivity and specificity with ELISA. Besides, the microarrays hold distinct advantages over ELISA test format in detection time, cost, operation and signal stability. Validated by the clinical assay, our quantum dots-based ToRCH microarrays have great potential in the detection of ToRCH-related pathogens

    Development of Polysorbate 80/Phospholipid mixed micellar formation for docetaxel and assessment of its in vivo distribution in animal models

    Get PDF
    Docetaxel (DTX) is a very important member of taxoid family. Despite several alternative delivery systems reported recently, DTX formulated by Polysorbate 80 and alcohol (Taxotere®) is still the most frequent administration in clinical practice. In this study, we incorporated DTX into Polysorbate 80/Phospholipid mixed micelles and compared its structural characteristics, pharmacokinetics, biodistribution, and blood compatibility with its conventional counterparts. Results showed that the mixed micelles loaded DTX possessed a mean size of approximately 13 nm with narrow size distribution and a rod-like micelle shape. In the pharmacokinetics assessment, there was no significant difference between the two preparations (P > 0.05), which demonstrated that the DTX in the two preparations may share a similar pharmacokinetic process. However, the Polysorbate 80/Phospholipid mixed micelles can increase the drug residence amount of DTX in kidney, spleen, ovary and uterus, heart, and liver. The blood compatibility assessment study revealed that the mixed micelles were safe for intravenous injection. In conclusion, Polysorbate 80/Phospholipid mixed micelle is safe, can improve the tumor therapeutic effects of DTX in the chosen organs, and may be a potential alternative dosage form for clinical intravenous administration of DTX

    BRCAA1 monoclonal antibody conjugated fluorescent magnetic nanoparticles for in vivo targeted magnetofluorescent imaging of gastric cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gastric cancer is 2th most common cancer in China, and is still the second most common cause of cancer-related death in the world. How to recognize early gastric cancer cells is still a great challenge for early diagnosis and therapy of patients with gastric cancer. This study is aimed to develop one kind of multifunctional nanoprobes for <it>in vivo </it>targeted magnetofluorescent imaging of gastric cancer.</p> <p>Methods</p> <p>BRCAA1 monoclonal antibody was prepared, was used as first antibody to stain 50 pairs of specimens of gastric cancer and control normal gastric mucous tissues, and conjugated with fluorescent magnetic nanoparticles with 50 nm in diameter, the resultant BRCAA1-conjugated fluorescent magnetic nanoprobes were characterized by transmission electron microscopy and photoluminescence spectrometry, as-prepared nanoprobes were incubated with gastric cancer MGC803 cells, and were injected into mice model loaded with gastric cancer of 5 mm in diameter via tail vein, and then were imaged by fluorescence optical imaging and magnetic resonance imaging, their biodistribution was investigated. The tissue slices were observed by fluorescent microscopy, and the important organs such as heart, lung, kidney, brain and liver were analyzed by hematoxylin and eosin (HE) stain method.</p> <p>Results</p> <p>BRCAA1 monoclonal antibody was successfully prepared, BRCAA1 protein exhibited over-expression in 64% gastric cancer tissues, no expression in control normal gastric mucous tissues, there exists statistical difference between two groups (<it>P </it>< 0.01). The BRCAA1-conjugated fluorescent magnetic nanoprobes exhibit very low-toxicity, lower magnetic intensity and lower fluorescent intensity with peak-blue-shift than pure FMNPs, could be endocytosed by gastric cancer MGC803 cells, could target <it>in vivo </it>gastric cancer tissues loaded by mice, and could be used to image gastric cancer tissues by fluorescent imaging and magnetic resonance imaging, and mainly distributed in local gastric cancer tissues within 12 h post-injection. HE stain analysis showed that no obvious damages were observed in important organs.</p> <p>Conclusions</p> <p>The high-performance BRCAA1 monoclonal antibody-conjugated fluorescent magnetic nanoparticles can target <it>in vivo </it>gastric cancer cells, can be used for simultaneous magnetofluorescent imaging, and may have great potential in applications such as dual-model imaging and local thermal therapy of early gastric cancer in near future.</p

    Using feature optimization and LightGBM algorithm to predict the clinical pregnancy outcomes after in vitro fertilization

    Get PDF
    BackgroundAccording to a recent report by the WHO, approximately 17.5\% (about one-sixth) of the global adult population is affected by infertility. Consequently, researchers worldwide have proposed various machine learning models to improve the prediction of clinical pregnancy outcomes during IVF cycles. The objective of this study is to develop a machine learning(ML) model that predicts the outcomes of pregnancies following in vitro fertilization (IVF) and assists in clinical treatment.MethodsThis study conducted a retrospective analysis on provincial reproductive centers in China from March 2020 to March 2021, utilizing 13 selected features. The algorithms used included XGBoost, LightGBM, KNN, Naïve Bayes, Random Forest, and Decision Tree. The results were evaluated using performance metrics such as precision, recall, F1-score, accuracy and AUC, employing five-fold cross-validation repeated five times.ResultsAmong the models, LightGBM achieved the best performance, with an accuracy of 92.31%, recall of 87.80%, F1-score of 90.00\%, and an AUC of 90.41%. The model identified the estrogen concentration at the HCG injection(etwo), endometrium thickness (mm) on HCG day(EM TNK), years of infertility(Years), and body mass index(BMI) as the most important features.ConclusionThis study successfully demonstrates the LightGBM model has the best predictive effect on pregnancy outcomes during IVF cycles. Additionally, etwo was found to be the most significant predictor for successful IVF compared to other variables. This machine learning approach has the potential to assist fertility specialists in providing counseling and adjusting treatment strategies for patients

    Misdiagnosed psychiatric manifestations in a rare disease: a case report of secondary anxiety syndrome in Cushing’s disease

    Get PDF
    Diagnosing and treating secondary psychiatric symptoms with accuracy can be challenging in clinical settings. In this case study, we report on a female patient with Cushing’s disease who was misdiagnosed with anxiety disorder during her first psychiatric visit. Following initial ineffective psychiatric intervention, unexplained hypokalemia, and hypothyroidism, the patient visited the endocrinology clinic and was diagnosed with Cushing’s disease. During the medical and surgical procedures that followed, high doses of psychotropic medication were continued to treat persisting anxiety. After discharge, the patient developed autonomic dysfunction and impaired consciousness. Upon readmission, serotonin syndrome due to inappropriate psychiatric medication was diagnosed. The management of secondary psychiatric syndromes must be adapted to changes in the patient’s primary condition, which necessitates interdisciplinary collaboration in general hospital settings

    Whole-genome analysis of the recombination and evolution of newly identified NADC30-like porcine reproductive and respiratory syndrome virus strains circulated in Gansu province of China in 2023

    Get PDF
    Porcine reproductive and respiratory syndrome virus (PRRSV) remains one of the major threats to swine industry, resulting in huge economic losses worldwide. Currently, PRRSV has diversified into multiple lineages with characteristics of extensive recombination in China. In this research, three virus strains were isolated and four virus whole genome sequences were generated and analyzed from clinical samples collected in Gansu province of China in 2023. The four virus strains were designated GSTS4-2023, GSLX2-2023, GSFEI2-2023 and GSBY4-2023. Phylogenetic analysis based on ORF5 sequences showed that GSTS4-2023, GSLX2-2023, GSFEI2-2023 and GSBY4-2023 shared 91.7, 91.2, 93.2 and 92.9% homology with NADC30 strain respectively, and belonged to lineage 1 of PRRSV-2. In addition, one amino acid deletion was observed at position 33 in ORF5 of GSTS4-2023, GSLX2-2023 and GSFEI2-2023. Moreover, amino acid alignment of the four strains showed a typical discontinuous 131-amino acid (aa) deletion in NSP2 for NADC30-like virus strains. Recombination analysis revealed that all four strains originated from NADC30 (lineage 1), with their minor parents coming from JXA1-like strains (lineage 8), VR-2332-like strains (lineage5) and QYYZ-like strains (lineage3). Finally, the three isolated virus strains, GSTS4-2023, GSLX2-2023 and GSFEI2-2023 showed relatively low levels of replication in cell culture. Our findings provide important implications for the field epidemiology of PRRSV

    Recent Advances in Nanotechnology Applied to Biosensors

    Get PDF
    In recent years there has been great progress the application of nanomaterials in biosensors. The importance of these to the fundamental development of biosensors has been recognized. In particular, nanomaterials such as gold nanoparticles, carbon nanotubes, magnetic nanoparticles and quantum dots have been being actively investigated for their applications in biosensors, which have become a new interdisciplinary frontier between biological detection and material science. Here we review some of the main advances in this field over the past few years, explore the application prospects, and discuss the issues, approaches, and challenges, with the aim of stimulating a broader interest in developing nanomaterial-based biosensors and improving their applications in disease diagnosis and food safety examination

    A Novel Quantum Dots–Based Point of Care Test for Syphilis

    Get PDF
    One-step lateral flow test is recommended as the first line screening of syphilis for primary healthcare settings in developing countries. However, it generally shows low sensitivity. We describe here the development of a novel fluorescent POC (Point Of Care) test method to be used for screening for syphilis. The method was designed to combine the rapidness of lateral flow test and sensitiveness of fluorescent method. 50 syphilis-positive specimens and 50 healthy specimens conformed by Treponema pallidum particle agglutination (TPPA) were tested with Quantum Dot-labeled and colloidal gold-labeled lateral flow test strips, respectively. The results showed that both sensitivity and specificity of the quantum dots–based method reached up to 100% (95% confidence interval [CI], 91–100%), while those of the colloidal gold-based method were 82% (95% CI, 68–91%) and 100% (95% CI, 91–100%), respectively. In addition, the naked-eye detection limit of quantum dot–based method could achieve 2 ng/ml of anti-TP47 polyclonal antibodies purified by affinity chromatography with TP47 antigen, which was tenfold higher than that of colloidal gold–based method. In conclusion, the quantum dots were found to be suitable for labels of lateral flow test strip. Its ease of use, sensitiveness and low cost make it well-suited for population-based on-the-site syphilis screening

    High Prevalence of Extended-Spectrum Beta Lactamases among Salmonella enterica Typhimurium Isolates from Pediatric Patients with Diarrhea in China

    Get PDF
    We investigated the extended-spectrum beta lactamases among 62 Salmonella enterica Typhimurium isolates recovered from children with diarrhea in a Chinese pediatric hospital. A large proportion of S. enterica Typhimurium isolates were resistant to multiple antimicrobial agents, including ampicillin (90.3%), tetracycline (80.6%), trimethoprim/sulfamethoxazole (74.2%), chloramphenicol (66.1%), cefotaxime (27.4%). Forty-nine (79.0%) of S. enterica Typhimurium isolates were positive for blaTEM-1b and resistant to ampicillin. Thirteen S. enterica Typhimurium isolates (21.0%) were positive for blaCTX-M-1-group and blaCTX-M-9-group, and all isolates harboring blaCTX-M genes were positive for ISEcp1. Two main clones (PFGE type A and D) accounted for nearly 70% of S. enterica Typhimurium isolates, and 7 CTX-M-producing isolates belonged to PFGE type D. Collectively, our data reveal multi-drug resistance and a high prevalence of extended spectrum beta lactamases among S. enterica Typhimurium isolates from children in China. In addition, we report the first identification of blaCTX-M-55 within Salmonella spp. Our data also suggest that clonal spread is responsible for the dissemination of S. enterica Typhimurium isolates
    corecore