82 research outputs found

    Dual mTOR/PI3K inhibition limits PI3K-dependent pathways activated upon mTOR inhibition in autosomal dominant polycystic kidney disease

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the development of kidney cysts leading to kidney failure in adulthood. Inhibition of mammalian target of rapamycin (mTOR) slows polycystic kidney disease (PKD) progression in animal models, but randomized controlled trials failed to prove efficacy of mTOR inhibitor treatment. Here, we demonstrate that treatment with mTOR inhibitors result in the removal of negative feedback loops and up-regulates pro-proliferative phosphatidylinositol 3-kinase (PI3K)-Akt and PI3K-extracellular signal-regulated kinase (ERK) signaling in rat and mouse PKD models. Dual mTOR/PI3K inhibition with NVP-BEZ235 abrogated these pro-proliferative signals and normalized kidney morphology and function by blocking proliferation and fibrosis. Our findings suggest that multi-target PI3K/mTOR inhibition may represent a potential treatment for ADPKD

    Didymin improves UV irradiation resistance in C. elegans

    Get PDF
    Didymin, a type of flavono-o-glycoside compound naturally present in citrus fruits, has been reported to be an effective anticancer agent. However, its effects on stress resistance are unclear. In this study, we treated Caenorhabditis elegans with didymin at several concentrations. We found that didymin reduced the effects of UV stressor on nematodes by decreasing reactive oxygen species levels and increasing superoxide dismutase (SOD) activity. Furthermore, we found that specific didymin-treated mutant nematodes daf-16(mu86) & daf-2(e1370), daf-16(mu86), akt-1(ok525), akt-2(ok393), and age-1(hx546) were susceptible to UV irradiation, whereas daf-2(e1371) was resistant to UV irradiation. In addition, we found that didymin not only promoted DAF-16 to transfer from cytoplasm to nucleus, but also increased both protein and mRNA expression levels of SOD-3 and HSP-16.2 after UV irradiation. Our results show that didymin affects UV irradiation resistance and it may act on daf-2 to regulate downstream genes through the insulin/IGF-1-like signaling pathway

    Relevance of JAK2V617F positivity to hematological diseases - survey of samples from a clinical genetics laboratory

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>JAK2V617F is found in the majority of patients with Ph- myeloproliferative neoplasms (MPNs) and has become a valuable marker for diagnosis of MPNs. However, it has also been found in many other hematological diseases, and some studies even detected the presence of JAK2V617F in normal blood samples. This casts doubt on the primary role of JAK2V617F in the pathogenesis of MPNs and its diagnostic value.</p> <p>Methods</p> <p>In the present study, we analyzed JAK2V617F positivity with 232 normal blood samples and 2663 patient blood, bone marrow, and amniotic fluid specimens obtained from a clinical genetics laboratory by using a simple DNA extraction method and a sensitive nested allele-specific PCR strategy.</p> <p>Results</p> <p>We found JAK2V617F present in the majority (78%) of MPN patients and in a small fraction (1.8-8.7%) of patients with other specific hematological diseases but not at all in normal healthy donors or patients with non-hematological diseases. We also revealed associations of JAK2V617F with novel as well as known chromosomal abnormalities.</p> <p>Conclusions</p> <p>Our study suggests that JAK2V617F positivity is associated with specific hematological malignancies and is an excellent diagnostic marker for MPNs. The data also indicate that the nested allele-specific PCR method provides clinically relevant information and should be conducted for all cases suspected of having MPNs as well as for other related diseases.</p

    Mitochondrial Uncoupling Inhibits p53 Mitochondrial Translocation in TPA-Challenged Skin Epidermal JB6 Cells

    Get PDF
    The tumor suppressor p53 is known to be able to trigger apoptosis in response to DNA damage, oncogene activation, and certain chemotherapeutic drugs. In addition to its transcriptional activation, a fraction of p53 translocates to mitochondria at the very early stage of apoptosis, which eventually contributes to the loss of mitochondrial membrane potential, generation of reactive oxygen species (ROS), cytochrome c release, and caspase activation. However, the mitochondrial events that affect p53 translocation are still unclear. Since mitochondrial uncoupling has been suggested to contribute to cancer development, herein, we studied whether p53 mitochondrial translocation and subsequent apoptosis were affected by mitochondrial uncoupling using chemical protonophores, and further verified the results using a siRNA approach in murine skin epidermal JB6 cells. Our results showed that mitochondrial uncoupling blocked p53 mitochondrial translocation induced by 12-O-tetradecanoylphorbol 13-acetate (TPA), a known tumor promoter to induce p53-mediated apoptosis in skin carcinogenesis. This blocking effect, in turn, led to preservation of mitochondrial functions, and eventually suppression of caspase activity and apoptosis. Moreover, uncoupling protein 2 (UCP2), a potential suppressor of ROS in mitochondria, is important for TPA-induced cell transformation in JB6 cells. UCP2 knock down cells showed enhanced p53 mitochondrial translocation, and were less prone to form colonies in soft agar after TPA treatment. Altogether, our data suggest that mitochondrial uncoupling may serve as an important regulator of p53 mitochondrial translocation and p53-mediated apoptosis during early tumor promotion. Therefore, targeting mitochondrial uncoupling may be considered as a novel treatment strategy for cancer

    Application of <i>Caenorhabditis elegans</i> in Lipid Metabolism Research

    No full text
    Over the last decade, the development and prevalence of obesity have posed a serious public health risk, which has prompted studies on the regulation of adiposity. With the ease of genetic manipulation, the diversity of the methods for characterizing body fat levels, and the observability of feeding behavior, Caenorhabditis elegans (C. elegans) is considered an excellent model for exploring energy homeostasis and the regulation of the cellular fat storage. In addition, the homology with mammals in the genes related to the lipid metabolism allows many aspects of lipid modulation by the regulators of the central nervous system to be conserved in this ideal model organism. In recent years, as the complex network of genes that maintain an energy balance has been gradually expanded and refined, the regulatory mechanisms of lipid storage have become clearer. Furthermore, the development of methods and devices to assess the lipid levels has become a powerful tool for studies in lipid droplet biology and the regulation of the nematode lipid metabolism. Herein, based on the rapid progress of C. elegans lipid metabolism-related studies, this review outlined the lipid metabolic processes, the major signaling pathways of fat storage regulation, and the primary experimental methods to assess the lipid content in nematodes. Therefore, this model system holds great promise for facilitating the understanding, management, and therapies of human obesity and other metabolism-related diseases

    The Orientation and Development of the Public Affair Management Specialty

    No full text

    Identification of Scopoletin and Chlorogenic Acid as Potential Active Components in Sunflower Calathide Enzymatically Hydrolyzed Extract towards Hyperuricemia

    No full text
    It is known that sunflower (Helianthus annuus L.) calathide enzymatically hydrolyzed extract (SCHE) contributes to the regulation of serum uric acid (UA); however, evidence regarding its bioactive components and mechanism are lacking. We identified two water-soluble components (scopoletin and chlorogenic acid) that are abundant in sunflower calathide, especially evaluated for the inhibition of xanthine oxidase (XO) and the expression levels of urate transporters with SCHE. Molecular docking of a chlorogenic acid–XO complex was more stable than that of the Scopoletin–XO, and its binding pockets, which closed the Mo = S center, was similar to xanthine pockets. Moreover, chlorogenic acid exhibited stronger inhibition than that of the scopoletin below 260 μM, despite the IC50 of scopoletin (577.7 μM) being lower than that chlorogenic acid (844.7 μM) on the UA generation assessed by a spectrophotometer in vitro. It revealed that chlorogenic acid and scopoletin were competitive inhibitors of XO. In addition, the SCHE (300 μg/mL) and chlorogenic acid (0.75 mM) obviously inhibited urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) expression levels, while scopoletin significantly upregulated the expression of GLUT9. To summarize, chlorogenic acid served a crucial role in UA regulation consistent with the SCHE and functioned as an important ingredient of SCHE. The strategic analysis of SCHE combined with scopoletin and chlorogenic acid may contribute to the development of food supplemental alternatives on UA metabolism and the reduction of agricultural byproduct waste

    Clinical research on the efficacy of self-made sichongsan in combination with gefitinib on NSCLC patients with EGFR mutation

    No full text
    This study is to investigate the efficacy of self-made sichongsan in combination with gefitinib on non-small-cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutation. A total of 47 NSCLC patients in advanced stage with EGFR mutation who had not received any treatment before admission were divided into the control group (n = 23) and the observation group (n = 24). Patients in the control group underwent gefitinib treatment, while those in the observation group additionally took self-made sichongsan for treatment. The objective response rate of the observation group was 75%, significantly higher than 52.18% in the control group ( P   0.05). At the 12th week of treatment, the levels of CEA and CA153 in the observation group were significantly lower than those in the control group ( P  < 0.05). In the observation group, the incidence rate of adverse reaction was 16.7%, which was significantly lower than 47.8% in the control group ( P  < 0.05). In conclusion, in terms of the first-line treatment for advanced NSCLC patients with EGFR mutation, the efficacy of self-made sichongsan in combination with gefitinib is superior to the single administration of gefitinib, and the former can more effectively decrease the levels of CEA and CA153 in serum of patients and reduce the incidence rate of adverse effects
    corecore