282 research outputs found

    Numerical Simulation of Radio Signal from Extended Air Showers

    Full text link
    The burst of radio emission by the extensive air shower provides a promising alternative for detecting ultra-high energy cosmic rays.We have developed an independent numerical program to simulate these radio signals. Our code is based on a microscopic treatment, with both the geosynchrotron radiation and charge excess effect included. Here we make a first presentation of our basic program and its results. The time signal for different polarizations are computed, we find that the pulses take on a bipolar pattern, the spectrum is suppressed towards the lower frequencies.We investigate how the shower at different heights in atmosphere contribute to the total signal, and examine the signal strength and distribution at sites of different elevations. We also study the signal from showers of different inclination angles and azimuth directions. In all these cases we find the charge excess effect important.Comment: 23 pages, 14 figure

    TeV cosmic-ray proton and helium spectra in the myriad model II

    Full text link
    Recent observations show that the cosmic ray nuclei spectra start to harden above 100 GeV, in contradiction with the conventional steady-state cosmic ray model. We had suggested that this anomaly is due to the propagation effect of cosmic rays released from local young cosmic ray sources, the total flux of the cosmic ray should be computed with the myriad model, where contribution from sources in local catalog is added to the background. However, while the hardening could be elegantly explained in this model, the model parameters obtained from the fit skew toward a region with fast diffusion and low supernova rate in the Galaxy, in tension with other observations. In this paper, we further explore this model in order to set up a concordant picture. Two possible improvements related to the cosmic ray sources have been considered. Firstly, instead of the usual axisymmetric disk model, we considered a spiral model of source distribution. Secondly, for the nearby and young sources which are paramount to the hardening, we allow for an energy-dependent escape time. We find that major improvement comes from the energy-dependent escape time of the local sources, and with both modifications, not only the cosmic ray proton and helium anomalies are solved, but also the parameters attain reasonable range values compatible with other analysis.Comment: 13 pages, 7 figures, 1 table, accepted for publication in RA

    Semi-Numerical Simulation of Reionization with Semi-Analytical Modeling of Galaxy Formation

    Full text link
    In a semi-numerical model of reionization, the evolution of ionization fraction is simulated approximately by the ionizing photon to baryon ratio criterion. In this paper we incorporate a semi-analytical model of galaxy formation based on the Millennium II N-body simulation into the semi-numerical modeling of reionization. The semi-analytical model is used to predict the production of ionizing photons, then we use the semi-numerical method to model the reionization process. Such an approach allows more detailed modeling of the reionization, and also connects observations of galaxies at low and high redshifts to the reionization history. The galaxy formation model we use was designed to match the low-zz observations, and it also fits the high redshift luminosity function reasonably well, but its prediction on the star formation falls below the observed value, and we find that it also underpredicts the stellar ionizing photon production rate, hence the reionization can not be completed at z∼6z \sim 6 without taking into account some other potential sources of ionization photons. We also considered simple modifications of the model with more top heavy initial mass functions (IMF), with which the reionization can occur at earlier epochs. The incorporation of the semi-analytical model may also affect the topology of the HI regions during the EoR, and the neutral regions produced by our simulations with the semi-analytical model appeared less poriferous than the simple halo-based models.Comment: 13 pages, 8 figures, RAA accepte

    Simulation on the sealing of aluminum ball joint

    Get PDF

    A Scalable Arrangement Method for Aperiodic Array Antennas to Reduce Peak Sidelobe Level

    Full text link
    Peak sidelobe level reduction (PSLR) is crucial in the application of large-scale array antenna, which directly determines the radiation performance of array antenna. We study the PSLR of subarray level aperiodic arrays and propose three array structures: dislocated subarrays with uniform elements (DSUE), uniform subarrays with random elements (USRE), dislocated subarrays with random elements (DSRE). To optimize the dislocation position of subarrays and random position of elements, the improved Bat algorithm (IBA) is applied. To draw the comparison of PSLR effect among these three array structures, we take three size of array antennas from small to large as examples to simulate and calculate the redundancy and peak sidelobe level (PSLL) of them. The results show that DSRE is the optimal array structure by analyzing the dislocation distance of subarray, scanning angle and applicable frequency. The proposed design method is a universal and scalable method, which is of great application value to the design of large-scale aperiodic array antenna
    • …
    corecore