197 research outputs found
Achieving unidirectional propagation of twisted magnons in a magnetic nanodisk array
Twisted magnons (TMs) have great potential applications in communication and
computing owing to the orbital angular momentum (OAM) degree of freedom.
Realizing the unidirectional propagation of TMs is the key to design functional
magnonics devices. Here we theoretically study the propagation of TMs in
one-dimensional magnetic nanodisk arrays. By performing micromagnetic
simulations, we find that the one-dimensional nanodisk array exhibits a few
bands due to the collective excitations of TMs. A simple model by considering
the exchange interaction is proposed to explain the emerging multiband
structure and theoretical results agree well with micromagnetic simulations.
Interestingly, for a zigzag structure, the dispersion curves and propagation
images of TMs show obvious nonreciprocity for specific azimuthal quantum number
(), which originates from a geometric effect depending on the phase
difference of TMs and the relative angle between two adjacent nanodisks.
Utilizing this feature, one can conveniently realize the unidirectional
propagation of TMs with arbitrary nonzero . Our work provides important
theoretical references for controlling the propagation of TMs.Comment: 7 pages, 6 figure
Advances of antimicrobial dressings loaded with antimicrobial agents in infected wounds
Wound healing is a complex process that is critical for maintaining the barrier function of the skin. However, when a large quantity of microorganisms invade damaged skin for an extended period, they can cause local and systemic inflammatory responses. If left untreated, this condition may lead to chronic infected wounds. Infected wounds significantly escalate wound management costs worldwide and impose a substantial burden on patients and healthcare systems. Recent clinical trial results suggest that the utilization of effective antimicrobial wound dressing could represent the simplest and most cost-effective strategy for treating infected wounds, but there has hitherto been no comprehensive evaluation reported on the efficacy of antimicrobial wound dressings in promoting wound healing. Therefore, this review aims to systematically summarize the various types of antimicrobial wound dressings and the current research on antimicrobial agents, thereby providing new insights for the innovative treatment of infected wounds
Escherichia coli O88 induces intestinal damage and inflammatory response through the oxidative phosphorylation and ribosome pathway in Pekin ducks.
peer reviewedColibacillosis is one of the major health threats in the poultry industry worldwide. Understanding the pathogenic mechanisms involved in Escherichia coli-induced inflammatory response may lead to the development of new therapies to combat the disease. To address this, a total of 96 1-day-old male lean Pekin ducklings were employed and randomly allocated to two treatments, each with six replicates of eight ducks. Ducks in the experiment group (EG) and the control group (CG) were separately orally administered with 0.2 ml of pathogenic E. coli O88 (3 × 109 CFU/ml) or equivalent volumes of 0.9% sterile saline solution on day 7, two times with an 8-h interval. Serum and intestinal samples were collected on days 9, 14, and 28. Results showed that ducks challenged with E. coli had lower average daily gain and higher feed intake/weight gain during days 9-14 and overall (P < 0.05). Histopathological examination showed that E. coli decreased the villus height and the ratio of villus height/crypt depth in the jejunum (P < 0.05) on days 9 and 14. The intestinal barrier was disrupted, presenting in E. coli ducks having higher serum DAO and D-LA on days 9 and 14 (P < 0.05) and greater content of serum LPS on day 9 (P < 0.05). Escherichia coli infection also triggered a systemic inflammatory response including the decrease of the serum IgA, IgM, and jejunal sIgA on day 14 (P < 0.05). In addition to these, 1,062 differentially expressed genes were detected in the jejunum tissues of ducks by RNA-seq, consisting of 491 upregulated and 571 downregulated genes. Based on the KEGG database, oxidative phosphorylation and the ribosome pathway were the most enriched. These findings reveal the candidate pathways and genes that may be involved in E. coli infection, allow a better understanding of the molecular mechanisms of inflammation progression and may facilitate the genetic improvement of ducks, and provide further insights to tackle the drug sensitivity and animal welfare issues
Abnormal Resting-State Functional Connectivity in the Whole Brain in Lifelong Premature Ejaculation Patients Based on Machine Learning Approach
Recent neuroimaging studies have indicated that abnormalities in brain structure and function may play an important role in the etiology of lifelong premature ejaculation (LPE). LPE patients have exhibited aberrant cortical structure, altered brain network function and abnormal brain activation in response to erotic pictures. However, it remains unclear whether resting-state whole brain functional connectivity (FC) is altered in LPE patients. Machine learning analysis has the advantage of screening the best classification features from high-throughput data (such as FC), which has the potential to identify the pathophysiological targets of disease by establishing classification indicators for patients and healthy controls (HCs). Therefore, the supported vector machine based classification model using FC as features was used in the present study to confirm the most specific FCs that distinguish LPE patients from healthy controls. After feature selection, the remained features were used to build the classification model, with an accuracy 0.85 ± 0.14, sensitivity of 0.92 ± 0.18, specificity of 0.72 ± 0.30, and recall index of 0.85 ± 0.17 across 1000 testing groups (100 times 10-folds cross validation). After that, two-sample t-tests with family-wise error correction were used to compare these features that occur more than 500 times during training steps between LPE patients and HCs. Four FCs, (1) between left medial part of orbital frontal cortex (mOFC) and right mOFC, (2) between the left rectus and right postcentral gyrus, (3) between the right insula and left pallidum, and (4) between the right middle part of temporal pole and right inferior part of temporal gyrus showed significant group difference. These results demonstrate that resting-state brain FC might be a discriminating feature to distinguish LPE patients from HCs. These classification features, especially the FC between bilateral mOFC, provide underlying abnormal central functional targets in LPE etiology, which offers a novel alternative target for future intervention in LPE treatment
Comparing the potential of Bacillus amyloliquefaciens CGMCC18230 with antimicrobial growth promoters for growth performance, bone development, expression of phosphorus transporters, and excreta microbiome in broiler chickens.
peer reviewedBone health of broiler chickens is essential for welfare and production. In this study, the probiotic Bacillus amyloliquefaciens (BA) CGMCC18230 was compared with antimicrobial growth promoters (AGPs) for its ability to promote growth and bone health. To address this, a total of 180 Arbor Acres (AA) 1-day-old, male, broiler chicks were randomly allocated into 3 treatment groups, with 6 replicates, containing 10 chicks in each replicate. The treatment groups were: control group (CON) fed a corn-soybean based diet; BA treatment group fed the basal diet supplemented with 2.5 × 1010 CFU/kg BA CGMCC18230; AGPs treatment group was fed the basal diet containing the antibiotics aureomycin (75 mg/kg), flavomycin (5 mg/kg) and kitasamycin (20 mg/kg). Over the 42 d experiment, broilers fed BA and AGPs diets both had higher BW, and the ADG was significantly (P < 0.05) higher than that of the CON group both in the grower phase (22-42 d) and overall. Moreover, with BA birds had higher (P < 0.05) serum concentrations of phosphorus (P, day 42) and alkaline phosphatase (ALP, days 21 and 42). Conversely, the content of P in excreta decreased significantly (P < 0.05) on days 21 and 42. Tibia bone mineralization was improved in BA, and the mRNA of P transport related genes PiT-1,2 in the duodenum and jejunum were significantly up-regulated in the BA group than in the CON group (P < 0.05). 16S rRNA gene sequencing revealed that dietary BA supplementation increased the relative abundance of butyrate-producing bacteria (Ruminococcaceae) and polyamine-producing bacteria (Akkermansia and Alistipes), which had a positive effect on bone development. These data show that dietary supplementation of BA CGMCC18320 improves broiler growth performance and bone health similar to supplementation with AGPs through up-regulation of intestinal P transporters, microbial modulation and increase P retention. However, no significant influence of BA CGMCC18320 supplementation on the retention of Ca was found
A flexible Cu-based catalyst system for the transformation of fructose to furanyl ethers as potential bio-fuels
Abstract(#br)Biomass-derived furanyl ethers, such as 5-alkoxymethylfurfurals (AMFs) and 2,5-bis(alkoxymethyl)furans (BAMFs), can be employed as promising biofuels or additives. The development of multifunctional catalysts for the efficient production of furanyl ethers from sugars through 5-hydroxymethylfurfural (HMF) as an intermediate is highly desirable but challenging, because multiple reactions including dehydration, etherification and hydrogenation get involved and the side reaction of sugars and HMF to form humins is inevitable. In this contribution, we found that the introduction of CuO resulted in the generation of Lewis acid sites at the cost of Bronsted acid sites over CuO-USY catalysts through the formation of Al-O-Cu(II) species. The dispersity of CuO particles and the amount of Lewis acid sites could be manipulated by adjusting the loading of CuO. If 5 wt% CuO was supported on USY zeolite to give a CuO(5)-USY catalyst, CuO particles with a high dispersity (36.4%) afforded abundant Lewis acid sites (457.1 μ mol/g). Lewis acid over CuO(5)-USY greatly promoted the acid-catalyzed dehydration of fructose to HMF and HMF etherification to AMFs, resulting in a HMF yield up to 86.2% from fructose and AMFs yields greater than 90% from HMF. Interestingly, a combination of CuO(5)-USY and a small amount of metallic Cu powder was able to offer desirable BAMFs yields by the reductive etherification of HMF under hydrogen atmosphere. As a result, 5-methoxymethylfurfural (MMF) of 79.6% and 2,5-bis(methoxymethyl)furan (BMMF) yield of 74.5% were achieved from fructose through HMF as an intermediate in the presence of CuO(5)-USY alone or with metallic Cu as a co-catalyst. Therefore, the above Cu-based catalyst system holds the promise to flexibly produce a family of AMFs or BAMFs from fructose via a facile two-step approach
Morphological quantification of proliferation-to-invasion transition in tumor spheroids
Abstract(#br)Background(#br)Metastasis determines the lethality of cancer. In most clinical cases, patients are able to live with tumor proliferation before metastasis. Thus, the transition from tumor proliferation to metastasis/invasion is essential. However, the mechanism is still unclear and especially, the proliferation-to-metastasis/invasion transition point has not been well defined. Therefore, quantitative characterization of this transition is urgently needed.(#br)Methods(#br)We have successfully developed a home-built living-cell incubation system combined with an inverted optical microscope, and a systematic, quantitative approach to describing the major characteristic morphological parameters for the identification of the critical transition points for tumor-cell spheroids in a collagen fiber scaffold.(#br)Results(#br)The system focuses on in vitro tumor modeling, e.g. the development of tumor-cell spheroids in a collagen fiber scaffold and the monitoring of cell transition from proliferation to invasion. By applying this approach to multiple tumor spheroid models, such as U87 (glioma tumor), H1299 (lung cancer), and MDA-MB-231 (breast cancer) cells, we have obtained quantitative morphological references to evaluate the proliferation-to-invasion transition time, as well as differentiating the invasion potential of tumor cells upon environmental changes, i.e. drug application.(#br)Conclusions(#br)Our quantitative approach provides a feasible clarification for the proliferation-to-invasion transition of in vitro tumor models (spheroids). Moreover, the transition time is a useful reference for the invasive potential of tumor cells.(#br)General significance(#br)This quantitative approach is potentially applicable to primary tumor cells, and thus has potential applications in the fields of cancer metastasis investigations and clinical diagnostics
Toxicity evaluation of processing Evodiae fructus based on intestinal microbiota
BackgroundWith the development of healthcare services, drug efficacy, and safety have become the focus of drug use, and processing alters drug toxicity and efficacy, exploring the effects of processing on Evodiae fructus (EF) can guide the clinical use of drugs.MethodsFifty male Kunming mice were randomly divided into the control group (CCN), raw small-flowered EF group (CRSEF), raw medium-flowered EF group (CRMEF), processing small-flowered EF group (CPSEF), and processing medium-flowered EF group (CPMEF). The CRSEF, CRMEF, CPSEF, and CPMEF groups were gavaged with aqueous extracts of raw small-flowered EF dry paste (RSEF), medium-flowered EF dry paste (RMEF), processing small-flowered EF dry paste (PSEF) and processing medium-flowered EF dry paste (PMEF), respectively, for 21 days at 5 times the pharmacopeial dosage. Upon concluding the experiment, histopathological sections of liver and kidney tissues were examined. Additionally, levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), serum creatinine (SCr), and blood urea nitrogen (BUN) were determined. DNA from the intestinal contents of the mice was extracted, and 16S rRNA full-length high-throughput sequencing was performed.ResultsAfter fed EF 21 days, mice exhibited a decreasing trend in body weight. Comparative analysis with the CCN group revealed an upward trend in SCr, BUN, AST, and ALT levels in both CRSEF and CRMEF groups. The CRMEF group displayed notably elevated BUN and AST levels, with an observed increasing trend in Scr and ALT. Kidney sections unveiled cellular edema and considerable inflammatory cell infiltrates, whereas significant liver damage was not evident. Compared with CRSEF, Bun levels were significantly lower while AST levels were significantly higher in the CPMEF group. Additionally, the intestinal microbiota diversity and the relative abundance of Psychrobacter decreased significantly, and the relative abundance of Staphylococcus, Jeotgalicoccus, and Salinicoccus increased significantly in the CPMEF group. AST, ALT, and SCr were positively correlated with Staphylococcus, Jeotgalicoccus, and Salinicoccus.ConclusionIn conclusion, PMEF significantly increased harmful bacteria (Staphylococcus, Jeotgalicoccus, and Salinicoccu) and decreased beneficial bacteria. SEF with 5 times the clinical dose showed nephrotoxicity and SEF nephrotoxicity decreased after processing, but EF hepatotoxicity was not significant, which may be due to insufficient dose concentration and time
Impact of microRNA polymorphisms on high-dose methotrexate-related hematological toxicities in pediatric acute lymphoblastic leukemia
ObjectivesIt is well known that transporter and enzyme genes could be regulated by microRNA (miRNA) at the post-transcriptional level, and single-nucleotide polymorphisms (SNPs) in miRNA, which are involved in the miRNA production and structure, may impact the miRNA expression level and then influence drug transport and metabolism. In this study, we aim to evaluate the association between miRNA polymorphisms and high-dose methotrexate (HD-MTX) hematological toxicities in Chinese pediatric patients with acute lymphoblastic leukemia (ALL).MethodA total of 181 children with ALL were administered with 654 evaluable cycles of HD-MTX. Their hematological toxicities were evaluated according to the National Cancer Institute Common Terminology Criteria for Adverse Events v5. The association between 15 candidate SNPs of miRNA and hematological toxicities (leukopenia, anemia, and thrombocytopenia) was analyzed using Fisher's exact test. Further multiple backward logistic regression analysis was used to explore the independent risk factors for grade 3/4 hematological toxicities.ResultRs2114358 G>A in pre-hsa-miR-1206 was related to HD-MTX-related grade 3/4 leukopenia after multiple logistic regression [GA + AA vs. GG: odds ratio (OR): 2.308, 95% CI: 1.219–4.372, P = 0.010], and rs56103835 T > C in pre-hsa-mir-323b was associated with HD-MTX-related grade 3/4 anemia (TT + TC vs. CC: OR: 0.360, 95% CI: 0.239–0.541, P = 0.000); none of the SNPs were significantly associated with grade 3/4 thrombocytopenia. Bioinformatics tools predicted that rs2114358 G>A and rs56103835 T>C would impact the secondary structure of pre-miR-1206 and pre-miR-323b, respectively, and then probably influence the expression level of mature miRNAs and their target genes.ConclusionRs2114358 G>A and rs56103835 T>C polymorphism may potentially influence HD-MTX-related hematological toxicities, which may serve as candidate clinical biomarkers to predict grade 3/4 hematological toxicities in pediatric patients with ALL
- …