54 research outputs found

    Bacteroides vulgatus alleviates dextran sodium sulfate-induced colitis and depression-like behaviour by facilitating gut-brain axis balance

    Get PDF
    BackgroundPatients with inflammatory bowel disease (IBD) have a higher prevalence of depression. Gut microbiota dysbiosis plays an important role in IBD and depression. However, few studies have explored the characteristic microbiota of patients with IBD and depression (IBDD), or their role in IBDD.MethodsWe performed deep metagenomic sequencing and 16S rDNA quantitative PCR to characterise the gut microbial communities of patients with IBDD and patients with IBD without depression (IBDND). We then assessed the effect of the microbiota on colitis and depression in mouse models of dextran sulfate sodium salt (DSS)-induced colitis and lipopolysaccharide (LPS)-induced depression. Furthermore, liquid chromatography–tandem mass spectrometry was used to analyse the microbiota-derived metabolites involved in gut–brain communication. Evans Blue tracer dye was used to assess blood–brain barrier (BBB) permeability.ResultsOur results showed that the faecal abundance of Bacteroides vulgatus (B. vulgatus) was lower in patients with IBDD than in those with IBDND. In the DSS-induced colitis mouse model, the B. vulgatus group showed a significantly lower disease activity index score, lesser weight loss, and longer colon length than the DSS group. Moreover, B. vulgatus relieved depression-like behaviour in the DSS-induced colitis mouse model and in the LPS-induced depression mouse model. Furthermore, the key metabolite of B. vulgatus was p-hydroxyphenylacetic acid (4-HPAA), which was found to relieve intestinal inflammation and alleviate depression-like behaviours in mouse models. By increasing the expression of the tight junction protein claudin-5 in the vascular endothelium of the BBB, B. vulgatus and 4-HPAA play critical roles in gut–brain communication.ConclusionB. vulgatus and B. vulgatus-derived 4-HPAA ameliorated intestinal inflammation and relieved depressive symptoms through the gut–brain axis. Thus, administration of B. vulgatus or 4-HPAA supplementation is a promising therapeutic strategy for treating IBD, particularly IBDD

    Skywork: A More Open Bilingual Foundation Model

    Full text link
    In this technical report, we present Skywork-13B, a family of large language models (LLMs) trained on a corpus of over 3.2 trillion tokens drawn from both English and Chinese texts. This bilingual foundation model is the most extensively trained and openly published LLMs of comparable size to date. We introduce a two-stage training methodology using a segmented corpus, targeting general purpose training and then domain-specific enhancement training, respectively. We show that our model not only excels on popular benchmarks, but also achieves \emph{state of the art} performance in Chinese language modeling on diverse domains. Furthermore, we propose a novel leakage detection method, demonstrating that test data contamination is a pressing issue warranting further investigation by the LLM community. To spur future research, we release Skywork-13B along with checkpoints obtained during intermediate stages of the training process. We are also releasing part of our SkyPile corpus, a collection of over 150 billion tokens of web text, which is the largest high quality open Chinese pre-training corpus to date. We hope Skywork-13B and our open corpus will serve as a valuable open-source resource to democratize access to high-quality LLMs

    An Underwater Time Reversal Communication Method Using Symbol-Based Doppler Compensation with a Single Sound Pressure Sensor

    No full text
    Due to the significant multipath and Doppler effects in the underwater acoustic (UWA) channel, the quality of the received signal is degraded, which seriously affects the performance of UWA communication. The paper proposes a time reversal UWA communication method combined with a symbol-based Doppler compensation (SBDC) technique to solve those problems. A single element time reversal mirror (TRM) is used to realize channel equalization and mitigate the inter-symbol interference (ISI) resulting from multipath propagation. The SBDC technique is subsequently used to compensate Doppler effects in the received signal, thereby reducing the bit error rate (BER) and improving the communication performance. In order to verify the performance of the proposed communication method, some simulations with real sounding channels were performed. Moreover, a field UWA communication experiment was conducted in the Songhua River (Harbin, China). The UWA communication experiment achieves nearly error-free performance with a communication rate of 100 bit/s in the bandwidth of 2 kHz. The results of the experiment demonstrate the feasibility and robustness of the proposed UWA communication method

    A Three-Dimensional Target Depth-Resolution Method with a Single-Vector Sensor

    No full text
    This paper mainly studies and verifies the target number category-resolution method in multi-target cases and the target depth-resolution method of aerial targets. Firstly, target depth resolution is performed by using the sign distribution of the reactive component of the vertical complex acoustic intensity; the target category and the number resolution in multi-target cases is realized with a combination of the bearing-time recording information; and the corresponding simulation verification is carried out. The algorithm proposed in this paper can distinguish between the single-target multi-line spectrum case and the multi-target multi-line spectrum case. This paper presents an improved azimuth-estimation method for multi-target cases, which makes the estimation results more accurate. Using the Monte Carlo simulation, the feasibility of the proposed target number and category-resolution algorithm in multi-target cases is verified. In addition, by studying the field characteristics of the aerial and surface targets, the simulation results verify that there is only amplitude difference between the aerial target field and the surface target field under the same environmental parameters, and an aerial target can be treated as a special case of a surface target; the aerial target category resolution can then be realized based on the sign distribution of the reactive component of the vertical acoustic intensity so as to realize three-dimensional target depth resolution. By processing data from a sea experiment, the feasibility of the proposed aerial target three-dimensional depth-resolution algorithm is verified

    Open-Lake Experimental Investigation of Azimuth Angle Estimation Using a Single Acoustic Vector Sensor

    No full text
    Five well-known azimuth angle estimation methods using a single acoustic vector sensor (AVS) are investigated in open-lake experiments. A single AVS can measure both the acoustic pressure and acoustic particle velocity at a signal point in space and output multichannel signals. The azimuth angle of one source can be estimated by using a single AVS in a passive sonar system. Open-lake experiments are carried out to evaluate how these different techniques perform in estimating azimuth angle of a source. The AVS that was applied in these open-lake experiments is a two-dimensional accelerometer structure sensor. It consists of two identical uniaxial velocity sensors in orthogonal orientations, plus a pressure sensor—all in spatial collocation. These experimental results indicate that all these methods can effectively realize the azimuth angle estimation using only one AVS. The results presented in this paper reveal that AVS can be applied in a wider range of application in distributed underwater acoustic systems for passive detection, localization, classification, and so on

    Application and Extension of Vertical Intensity Lower-Mode in Methods for Target Depth-Resolution with a Single-Vector Sensor

    No full text
    In this paper, based on the reactive component of the vertical intensity, the method for target depth resolution has been improved. In the previous existing research results, using the reactive component of vertical intensity, the research objects for target depth resolution in shallow water, can only be the targets whose frequencies can only excite the first two normal modes, and the depth of targets whose frequencies excite more than two normal modes cannot be correctly identified. The basic idea of the improved method is to classify targets on the foundation of the lower-mode correlation quantity of the vertical intensity. Based on the improved method, we can realize depth resolution of the targets whose frequency can excite the first three normal modes so as to effectively expand the working band useful for target depth resolution. Finally, we can realize the three-dimensional target depth resolution so as to distinguish the aerial, surface and underwater targets. The feasibility of the algorithm is verified by simulation and experimental data processing

    An Improved Aerial Target Localization Method with a Single Vector Sensor

    No full text
    This paper focuses on the problems encountered in the actual data processing with the use of the existing aerial target localization methods, analyzes the causes of the problems, and proposes an improved algorithm. Through the processing of the sea experiment data, it is found that the existing algorithms have higher requirements for the accuracy of the angle estimation. The improved algorithm reduces the requirements of the angle estimation accuracy and obtains the robust estimation results. The closest distance matching estimation algorithm and the horizontal distance estimation compensation algorithm are proposed. The smoothing effect of the data after being post-processed by using the forward and backward two-direction double-filtering method has been improved, thus the initial stage data can be filtered, so that the filtering results retain more useful information. In this paper, the aerial target height measurement methods are studied, the estimation results of the aerial target are given, so as to realize the three-dimensional localization of the aerial target and increase the understanding of the underwater platform to the aerial target, so that the underwater platform has better mobility and concealment

    Study of High-Silicon Steel as Interior Rotor for High-Speed Motor Considering the Influence of Multi-Physical Field Coupling and Slotting Process

    No full text
    Currently, high-speed motors usually adopt rotor structures with surface-mounted permanent magnets, but their sheaths will deteriorate performance significantly. The motor with interior rotor structure has the advantages of high power density and efficiency. At the same time, high silicon steel has low loss and high mechanical strength, which is extremely suitable for high-speed motor rotor core material. Therefore, in this paper, the feasibility of using high silicon steel as the material of an interior rotor high-speed motor is investigated. Firstly, the magnetic properties of high silicon steel under multi-physical fields were tested and analyzed in comparison with conventional silicon steel. Meanwhile, an interior rotor structure of high-speed motor using high silicon steel as the rotor core is proposed, and its electromagnetic, mechanical, and thermal properties are simulated and evaluated. Then, the experimental comparative analysis was carried out in terms of the slotting process of the core, and the machining of the high silicon steel rotor core was successfully completed. Finally, the feasibility of the research idea was verified by the above theoretical analysis and experimental characterization

    Calibration of Small-Grain Seed Parameters Based on a BP Neural Network: A Case Study with Red Clover Seeds

    No full text
    In order to enhance the accuracy of discrete element numerical simulations in the processing of small-seed particles, it is essential to calibrate the parameters of seeds within the discrete element software. This study employs a series of physical tests to obtain the physical and contact parameters of red clover seeds. A discrete element model of red clover seeds is established. Plackett–Burman Design, steepest ascent, and Central Composite Design experiments are sequentially conducted. The simulation deviation of the resting angle of red clover seeds is employed as the evaluation criterion for parameter optimization. The results indicate that the coefficients of static friction between red clover seeds, the coefficients of rolling friction between red clover seeds, and the coefficients of static friction between red clover seeds and the steel plates significantly influence the resting angle. Modeling was performed using a backpropagation neural network, a genetic algorithm–optimized BP network, particle swarm optimization, and simulated annealing. It was found that GA-BP ensured both accuracy and stability. Compared to the traditional response surface methodology, GA-BP showed better fitting performance. For the optimized red clover seed simulation, the error between the angle of repose and the physical experiment was 0.98%. This research provides new insights into the calibration of small-grain seed parameters, demonstrating the value of GA-BP for precision modeling
    • …
    corecore