83 research outputs found
Power delivery mechanisms for asynchronous loads in energy harvesting systems
PhD ThesisFor systems depending on methods, a fundamental
contradiction in the power delivery chain has existed between conventional
to supply it. DC/DC conversion (e.g.)
has therefore been an integral part of such systems to resolve this contradiction.
be made tolerant to a much wider range of Vdd variance. This may open up
opportunities for much more energy efficient methods of power delivery.
performance of different power delivery mechanisms driving both asynchronous
and synchronous loads directly from a harvester source bypassing bulky energy
method, which employs a
energy from a EH circuit depending on load and source conditions, is developed.
through comprehensive comparative analysis.
Based on the novel CBB power delivery method, an asynchronous controller is
circuits to work with tasks. The successful asynchronous control design drives a
case study that is meant to explore relations between power path and task path.
To deal with different tasks with variable harvested power, systems may have a
range of operation conditions and thus dynamically call for CBB or SCC type power
set of capacitors to form CBB or SCC is implemented with economic system size.
This work presents an unconventional way of designing a compact-size, quick-
circuit
overcome large voltage variation in EH systems and implement smart power
management for harsh EH environment. The power delivery mechanisms (SCC,
employed to help asynchronous-
logic-based chip testing and micro-scale EH system demonstrations
Recommended from our members
Hypericin enhances Ī²-lactam antibiotics activity by inhibiting sarA expression in methicillin-resistant Staphylococcus aureus.
Bacteremia is a life-threating syndrome often caused by methicillin-resistant Staphylococcus aureus (MRSA). Thus, there is an urgent need to develop novel approaches to successfully treat this infection. Staphylococcal accessory regulator A (SarA), a global virulence regulator, plays a critical role in pathogenesis and Ī²-lactam antibiotic resistance in Staphylococcus aureus. Hypericin is believed to act as an antibiotic, antidepressant, antiviral and non-specific kinase inhibitor. In the current study, we investigated the impact of hypericin on Ī²-lactam antibiotics susceptibility and mechanism(s) of its activity. We demonstrated that hypericin significantly decreased the minimum inhibitory concentrations of Ī²-lactam antibiotics (e.g., oxacillin, cefazolin and nafcillin), biofilm formation and fibronectin binding in MRSA strain JE2. In addition, hypericin significantly reduced sarA expression, and subsequently decreased mecA, and virulence-related regulators (e.g., agr RNAā
¢) and genes (e.g., fnbA and hla) expression in the studied MRSA strain. Importantly, the inĀ vitro synergistic effect of hypericin with Ī²-lactam antibiotic (e.g., oxacillin) translated into inĀ vivo therapeutic outcome in a murine MRSA bacteremia model. These findings suggest that hypericin plays an important role in abrogation of Ī²-lactam resistance against MRSA through sarA inhibition, and may allow us to repurpose the use of Ī²-lactam antibiotics, which are normally ineffective in the treatment of MRSA infections (e.g., oxacillin)
A nomogram for predicting postoperative overall survival of patients with lung squamous cell carcinoma: A SEER-based study
BackgroundLung squamous cell carcinoma (LSCC) is a common subtype of non-small cell lung cancer. Our study aimed to construct and validate a nomogram for predicting overall survival (OS) for postoperative LSCC patients.MethodsA total of 8,078 patients eligible for recruitment between 2010 and 2015 were selected from the Surveillance, Epidemiology, and End Results database. Study outcomes were 1-, 2- and 3-year OS. Analyses performed included univariate and multivariate Cox regression, receiver operating characteristic (ROC) curve construction, calibration plotting, decision curve analysis (DCA) and KaplanāMeier survival plotting.ResultsSeven variables were selected to establish our predictive nomogram. Areas under the ROC curves were 0.658, 0.651 and 0.647 for the training cohort and 0.673, 0.667 and 0.658 for the validation cohort at 1-, 2- and 3-year time-points, respectively. Calibration curves confirmed satisfactory consistencies between nomogram-predicted and observed survival probabilities, while DCA confirmed significant clinical usefulness of our model. For risk stratification, patients were divided into three risk groups with significant differences in OS on KaplanāMeier analysis (Pā<ā0.001).ConclusionHere, we designed and validated a prognostic nomogram for OS in postoperative LSCC patients. Application of our model in the clinical setting may assist clinicians in evaluating patient prognosis and providing highly individualized therapy
Reverse atrial remodeling in heart failure with recovered ejection fraction
Background
Heart failure with recovered ejection fraction (HFrecEF) has been a newly recognized entity since 2020. However, the concept has primarily focused on left ventricular ejection fraction improvement, with less focus on the recovery of the left atrium. In this study, we investigated changes in left atrial (LA) echocardiographic indices in HFrecEF.
Methods and Results
An inpatient cohort with heart failure with reduced ejection fraction (HFrEF) was identified retrospectively and followed up prospectively in a single tertiary hospital. The enrolled patients were classified into HFrecEF and persistent HFrEF groups. Alternations in LA parameters by echocardiography were calculated. The primary outcome was a composite of cardiovascular death or heart failure rehospitalization. A total of 699 patients were included (HFrecEF: n=228; persistent HFrEF: n=471). Compared with persistent HFrEF, the HFrecEF group had greater reductions in LA diameter, LA transverse diameter, LA superiorāinferior diameter, LA volume, and LA volume index but not in LA sphericity index. Cox regression analysis showed that the HFrecEF group experienced lower risks of prespecified end points than the persistent HFrEF group after adjusting for confounders. Additionally, 136 (59.6%) and 62 (13.0%) patients showed LA reverse remodeling (LARR) for the HFrecEF and persistent HFrEF groups, respectively. Among the HFrecEF subgroup, patients with LARR had better prognosis compared with those without LARR. Multivariate logistic analysis demonstrated that age and coronary heart disease were 2 independent negative predictors for LARR.
Conclusions
In HFrecEF, both left ventricular systolic function and LA structure remodeling were improved. Patients with HFrecEF with LARR had improved clinical outcomes, indicating that the evaluation of LA size provides a useful biomarker for risk stratification of heart failure
How Low Nucleation Density of Graphene on CuNi Alloy is Achieved
CuNi alloy foils are demonstrated to be one of the best substrates for synthesizing large area single-crystalline graphene because a very fast growth rate and low nucleation density can be simultaneously achieved. The fast growth rate is understood to be due the abundance of carbon precursor supply, as a result of the high catalytic activity of Ni atoms. However, a theoretical understanding of the low nucleation density remains controversial because it is known that a high carbon precursor concentration on the surface normally leads to a high nucleation density. Here, the graphene nucleation on the CuNi alloy surfaces is systematically explored and it is revealed that: i) carbon atom dissolution into the CuNi alloy passivates the alloy surface, thereby drastically increasing the graphene nucleation barrier; ii) carbon atom diffusion on the CuNi alloy surface is greatly suppressed by the inhomogeneous atomic structure of the surface; and iii) a prominent increase in the rate of carbon diffusion into the bulk occurs when the Ni composition is higher than the percolation threshold. This study reveals the key mechanism for graphene nucleation on CuNi alloy surfaces and provides a guideline for the catalyst design for the synthesis of graphene and other 2D materials
Evolutionary characteristics and genetic transmission patterns of predominant HIV-1 subtypes among men who have sex with men in China.
OBJECTIVES: Men who have sex with men (MSM) represent one of the major risk groups for HIV-1 infection in China, and the predominant subtypes among this population has changed over the last two decades. The objective of this study was to determine the evolutionary characteristics and transmission patterns of the dominant HIV-1 strains in the Chinese MSM population. METHODS: A total of 4980 published HIV-1 pol gene sequences from MSM in China were retrieved and comprehensive evolutionary and transmission analyses were then conducted. Bayesian coalescent-based methods and selection pressure analyses were used to reconstruct the time-scale and demographic history and to estimate other evolutionary parameters. Transmission patterns were characterized using network analyses. RESULTS: There were 2546 (51.12%) CRF01_AE, 1263 (25.36%) CRF07_BC, and 623 (12.51%) subtype B, accounting for 88.99% of the total sequences. From 2000 to 2016, the prevalence of CRF01_AE was stable, comprising nearly half of all sequences over time (58.33-45.38%, p=0.071). CRF07_BC increased slightly from 13.3% to 22.49% (p<0.001), while subtype B decreased dramatically from 41.67% to 9.04% (p<0.001). Demographic reconstruction showed that the greatest expansion of the HIV epidemic occurred between 1999 and 2005. CRF01_AE had a higher estimated evolutionary rate (2.97Ć10-3 substitutions/site/year) and exhibited more sites under positive selection (25/351 codons) compared to the other subtypes. Network analyses showed that CRF07_BC (68.29%, 84/123) had a higher proportion of cross-region networks than CRF01_AE (49.1%, 174/354) and subtype B (36.46%, 35/96) (p<0.001). CONCLUSIONS: The predominant subtypes of HIV-1 in Chinese MSM have different evolutionary characteristics and transmission patterns, which poses a significant challenge to HIV treatment and disease prevention
Reverse atrial remodeling in heart failure with recovered ejection fraction
Background Heart failure with recovered ejection fraction (HFrecEF) has been a newly recognized entity since 2020. However, the concept has primarily focused on left ventricular ejection fraction improvement, with less focus on the recovery of the left atrium. In this study, we investigated changes in left atrial (LA) echocardiographic indices in HFrecEF.
Methods and Results An inpatient cohort with heart failure with reduced ejection fraction (HFrEF) was identified retrospectively and followed up prospectively in a single tertiary hospital. The enrolled patients were classified into HFrecEF and persistent HFrEF groups. Alternations in LA parameters by echocardiography were calculated. The primary outcome was a composite of cardiovascular death or heart failure rehospitalization. A total of 699 patients were included (HFrecEF: n=228; persistent HFrEF: n=471). Compared with persistent HFrEF, the HFrecEF group had greater reductions in LA diameter, LA transverse diameter, LA superiorāinferior diameter, LA volume, and LA volume index but not in LA sphericity index. Cox regression analysis showed that the HFrecEF group experienced lower risks of prespecified end points than the persistent HFrEF group after adjusting for confounders. Additionally, 136 (59.6%) and 62 (13.0%) patients showed LA reverse remodeling (LARR) for the HFrecEF and persistent HFrEF groups, respectively. Among the HFrecEF subgroup, patients with LARR had better prognosis compared with those without LARR. Multivariate logistic analysis demonstrated that age and coronary heart disease were 2 independent negative predictors for LARR.
Conclusions In HFrecEF, both left ventricular systolic function and LA structure remodeling were improved. Patients with HFrecEF with LARR had improved clinical outcomes, indicating that the evaluation of LA size provides a useful biomarker for risk stratification of heart failure
The cellular source for APOBEC3G's incorporation into HIV-1
<p>Abstract</p> <p>Background</p> <p>Human APOBEC3G (hA3G) has been identified as a cellular inhibitor of HIV-1 infectivity. Viral incorporation of hA3G is an essential step for its antiviral activity. Although the mechanism underlying hA3G virion encapsidation has been investigated extensively, the cellular source of viral hA3G remains unclear.</p> <p>Results</p> <p>Previous studies have shown that hA3G forms low-molecular-mass (LMM) and high-molecular-mass (HMM) complexes. Our work herein provides evidence that the majority of newly-synthesized hA3G interacts with membrane lipid raft domains to form Lipid raft-associated hA3G (RA hA3G), which serve as the precursor of the mature HMM hA3G complex, while a minority of newly-synthesized hA3G remains in the cytoplasm as a soluble LMM form. The distribution of hA3G among the soluble LMM form, the RA LMM form and the mature forms of HMM is regulated by a mechanism involving the N-terminal part of the linker region and the C-terminus of hA3G. Mutagenesis studies reveal a direct correlation between the ability of hA3G to form the RA LMM complex and its viral incorporation.</p> <p>Conclusions</p> <p>Together these data suggest that the Lipid raft-associated LMM A3G complex functions as the cellular source of viral hA3G.</p
Preliminary Study on Double Lining Support Design for Water Plugging of Highway Tunnel under High Water Pressure in Mountain Area Based on Limited Drainage
In the water-rich karst regions, high water and mud outbursts are common geological disasters in tunnel construction. To ensure the safe and smooth construction of tunnel projects, it is necessary to consider anti-water pressure, water inrush prevention and geological disasters during the design of tunnels. Based on the Yongfutun Tunnel Project, this paper studies the application and effect of radial grouting and curtain grouting, which involves those in high-water-pressure tunnels under double-layer support conditions. To obtain the effects and parameters of radial grouting and curtain grouting, the influences of different grouting ranges on the tunnel’s surrounding rocks and supporting structures were analyzed and the finite difference method was adopted. The results show that the radial grouting of the surrounding rock can notably improve the initial support of the tunnel, but the impact is less obvious when the grouting range exceeds 4 m. The design of radial grouting is recommended to be 4.0 m to 4.5 m. Curtain grouting can effectively reduce the external water pressure of the tunnel lining. The external water pressure of the grouting area is 23% greater than that without curtain grouting. Curtain grouting can slow down the infiltration of external water pressure. This is beneficial to the stress of the tunnel lining structure, but the improvement in initial support force is slight. Moreover, curtain grouting improves the safety reserve of the secondary lining by strengthening the self-stability ability of the surrounding rock. Meanwhile, the double-layer primary support can effectively share the external water pressure and surrounding rock pressure. This study provides a certain reference for the lining design of high-water-pressure tunnels
Fault Diagnosis and Maintenance Countermeasures of Transverse Drainage Pipe in Subway Tunnel Based on Fault Tree Analysis
Transverse drainage pipe, one of the main channels of groundwater behind the lining of subway tunnels, plays an important role in the safety and stability of the tunnel lining structure. For the problem of blocked transverse drainage pipe in a subway tunnel, a fault tree model of blocked transverse drainage pipe in Chongqing subway tunnel was constructed in this paper, the quantitative and qualitative analysis of fault tree was conducted, and countermeasures for maintenance of transverse drainage pipe were proposed. The study finds that, (1) the chemical type of groundwater was mainly CaHCO3; most of the groundwater is strongly alkaline with pH greater than 8; the groundwater temperature is 20 Ā± 3 Ā°C; (2) the basic events of blocked transverse drainage pipe have 3 minimum cut sets, and the basic events concrete slurry enters the drainage pipe; groundwater temperature, groundwater pH value, and concentration of anions and cations in groundwater were the main fault factors of blocked transverse drainage pipe; (3) preventive maintenance of transverse drainage pipe during tunnel construction includes construction quality control of drainage pipe and application of anti-crystallized blocking drainage pipe; preventive maintenance of transverse drainage pipe during tunnel operation includes monitoring of groundwater ion concentration, pH, and temperature; and maintenance treatment of transverse drainage pipe during tunnel operation includes physical treatment techniques, such as ultrasonic resonance, and chemical treatment techniques, such as acid-base neutralization reaction. The results of the study have certain guiding significance for the design, construction, and operation of transverse drainage pipe in subway tunnels
- ā¦