38 research outputs found

    Exosomal miRNA-profiling of pleural effusion in lung adenocarcinoma and tuberculosis

    Get PDF
    BackgroundPleural effusion (PE) caused by lung cancer is prevalent, and it is difficult to differentiate it from PE caused by tuberculosis. Exosome-based liquid biopsy offers a non-invasive technique to diagnose benign and malignant PE. Exosomal miRNAs are potential diagnostic markers and play an essential role in signal transduction and biological processes in tumor development. We hypothesized that exosomal miRNA expression profiles in PE would contribute to identifying its diagnostic markers and elucidating the molecular basis of PE formation in lung cancer.MethodsThe exosomes from PE caused by lung adenocarcinoma (LUAD) and pulmonary tuberculosis were isolated and verified by transmission electron microscopy. The exosomal miRNA profiles were identified using deep sequencing and validated with quantitative real-time PCR (qRT-PCR). We performed bioinformatic analysis for differentially expressed miRNAs to explore how exosomal miRNAs regulate pleural effusion.ResultsWe identified 99 upregulated and 91 downregulated miRNAs in malignant pleural effusion (MPE) compared to tuberculous pleural effusion (TPE). Seven differentially expressed miRNAs (DEmiRNAs) were validated by qRT-PCR, out of which 5 (71.4%) were confirmed through sequencing. Gene Ontology (GO) analysis revealed that most exosomal miRNAs target genes were involved in regulating cellular processes and nitrogen compound metabolism. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, the exosomal miRNAs target genes were mainly involved in Fc gamma R-mediated phagocytosis, Rap1 signaling pathway, and breast cancer. The hub genes, including ITGAM, FOXO1, MAPK14, YWHAB, GRIN1, and PRF1, were screened through plug-in cytoHubba. The PFR1 was identified as a critical gene in MPE formation using single-cell sequencing analysis. Additionally, we hypothesized that tumor cells affected natural killer cells and promoted the generation of PE in LUAD via the exosomal hsa-miR-3120-5p-PRF1 axis.ConclusionsWe identified exosomal miRNA profiles in LUAD-MPE and TPE, which may help in the differential diagnosis of MPE and TPE. Bioinformatic analysis revealed that these miRNAs might affect PE generation through tumor immune response in LUAD. Our results provided a new theoretical basis for understanding the function of exosomal miRNAs in LUAD-MPE

    Limonene, the compound in essential oil of nutmeg displayed antioxidant effect in sunflower oil during the deep-frying of Chinese Maye

    No full text
    The deep-frying process for plenty of fried products using vegetable oils needs safe and effective antioxidants. In the present exploration, the nutmeg essential oil (NEO) was employed as a potential antioxidant for sunflower oil during the deep-frying of Chinese Maye at 180°C for 30 hr. In the comparative study, the additions for NEO at 0.12 g/kg, TBHQ at 0.12 g/kg, BHA at 0.08 g/kg, and BHT at 0.08 g/kg to sunflower oil were able to obviously improve its oxidative stability during the deep-frying process, and their antioxidant effects were in the relative order: TBHQ at 0.12 g/kg > NEO at 0.12 g/kg > BHA at 0.08 g/kg > BHT at 0.08 g/kg (p < .05). Besides, NEO at 0.12 g/kg could markedly ameliorate the sensory properties including flavor, taste, crispness, and overall acceptability of the fried products, Chinese Maye (p < .05 or p < .01). In addition, using antioxidant activity-guided fractionation, three active compounds including limonene, terpinolene, and geranyl acetate were isolated from NEO. Among them, limonene was demonstrated to not only significantly increase the oxidative stability of sunflower oil in the deep-frying process, but also significantly increase the sensory properties of the fried products, Chinese Maye (p < .05 or p < .01). Consequently, limonene could be employed as antioxidants in sunflower oil for the deep-frying of Chinese Maye, and the sunflower oil flavored by NEO could be used as frying oils for its oxidative stability and unique flavor

    Effect of the Hydrogen Injection Position on the Combustion Process of a Direct Injection X-Type Rotary Engine with a Hydrogen Blend

    No full text
    As a new type of power device, the X-type rotary engine (XRE) is regarded as a major revolution of the internal combustion engine with its special structure and high-efficiency hybrid cycle (HEHC). A 3D CFD model of an XRE with hydrogen–gasoline fuel is firstly built in this paper. The gasoline is premixed with air in the intake of the XRE. The hydrogen is directly injected (DI) into the cylinder with four different injection positions. The effects of the hydrogen injection position on the combustion process, engine thermodynamic performance, and unburned carbon emissions and NOx emissions are investigated. The results show that, due to the interaction between the in-cylinder main flow field and the injected hydrogen gas flow, different hydrogen concentration zones are formed at different injection positions. Furthermore, a larger hydrogen distribution area and being closer to the ignition position led to a faster in-cylinder combustion rate and a higher in-cylinder temperature and pressure. When the injection position is from the front to the back of the combustion chamber such as in position 2, the hydrogen has the widest distribution area and is closest to the ignition position, resulting in its fastest combustion speed. Meanwhile, the peak in-cylinder pressure is 3.73 MPa and the peak temperature is a maximum of 1835.16 K. Especially, the highest indicated thermal efficiency of 26.56% is found in position 2, which is 10.08% higher than that of position 4 (from right to left of the combustion chamber), which was 24.13%. At the same time, due to the best overall combustion effect, position 2 presents the lowest final unburned carbon emission of 0.36 mg, while it produces the highest NOx emission of 9.15 μg. Thus, this study provides important theoretical guidelines for the hydrogen injection strategy of the XRE using hydrogen–gasoline fuel

    Effect of the Hydrogen Injection Position on the Combustion Process of a Direct Injection X-Type Rotary Engine with a Hydrogen Blend

    No full text
    As a new type of power device, the X-type rotary engine (XRE) is regarded as a major revolution of the internal combustion engine with its special structure and high-efficiency hybrid cycle (HEHC). A 3D CFD model of an XRE with hydrogen–gasoline fuel is firstly built in this paper. The gasoline is premixed with air in the intake of the XRE. The hydrogen is directly injected (DI) into the cylinder with four different injection positions. The effects of the hydrogen injection position on the combustion process, engine thermodynamic performance, and unburned carbon emissions and NOx emissions are investigated. The results show that, due to the interaction between the in-cylinder main flow field and the injected hydrogen gas flow, different hydrogen concentration zones are formed at different injection positions. Furthermore, a larger hydrogen distribution area and being closer to the ignition position led to a faster in-cylinder combustion rate and a higher in-cylinder temperature and pressure. When the injection position is from the front to the back of the combustion chamber such as in position 2, the hydrogen has the widest distribution area and is closest to the ignition position, resulting in its fastest combustion speed. Meanwhile, the peak in-cylinder pressure is 3.73 MPa and the peak temperature is a maximum of 1835.16 K. Especially, the highest indicated thermal efficiency of 26.56% is found in position 2, which is 10.08% higher than that of position 4 (from right to left of the combustion chamber), which was 24.13%. At the same time, due to the best overall combustion effect, position 2 presents the lowest final unburned carbon emission of 0.36 mg, while it produces the highest NOx emission of 9.15 μg. Thus, this study provides important theoretical guidelines for the hydrogen injection strategy of the XRE using hydrogen–gasoline fuel

    Dynamics of synchronization for four hydraulic motors in a vibrating pile driver system

    No full text
    This article proposes a self-synchronous vibrating mechanism with four unbalanced rotors driven by four hydraulic motors mounted symmetrically on two coaxial rotating beams. Analytical expressions of the steady-state response for the multi-body vibrating system are deduced. The dimensionless coupling equations of the four unbalanced rotors are derived by virtue of the averaging method of modified small parameters. The synchronization and stability criteria are deduced using the existence and stability of the zero solution for the dimensionless coupling equations of the four unbalanced rotors. The coefficients of synchronization ability are defined. By numeric analysis, effect of the dynamic parameters on the characteristics of coupling dynamics for the unbalanced rotors is discussed to determine dynamic parameter intervals of synchronization stability. Computer simulations are carried out to verify the correctness of the theoretical analysis

    Effects of Different Vegetation Restoration Types on the Fractal Characteristics of Soil Particles in Earthy-Rocky Mountain Area of Northern China

    No full text
    The fractal characteristics of soil particle-size distribution (PSD) constitute an important soil physical property, and fractal models of soil PSD are increasingly used to describe the effects of vegetation on the improvement of soil-related properties. Based on the fractal theory, this paper selected four typical vegetation restoration types (Quercus acutissima, QAC; Robinia pseudoacacia, RPL; Pinus densiflora, PDS; QAC × PDS) in the Taiyi mountainous area as the research object, and the single-fractal dimension (D) and multi-fractal parameters of PSD and its correlation with soil-associated properties were studied. The results show that (1) QAC × PDS reduced the heterogeneity of soil sand distribution, which also increased the range and concentration of soil PSD in the dense area. Soil clay and silt contents showed QAC × PDS > RPL > QAC > PDS. QAC × PDS significantly increased clay and silt content in 0–20 cm soil. (2) D varies among different vegetation restoration types, which was QAC × PDS > RPL > QAC > PDS, and the D of 0–20 cm soil was greater than that of 20–40 cm. For the multi-fractal parameters of PSD, the capacity dimension (D0), information dimension (D1), correlation dimension (D2) and D1/D0 in 0–20 cm soil of different vegetation restoration types showed significant differences. (3) D and multi-fractal parameters were significantly positively correlated with clay and silt contents, which were significantly negatively correlated with sand contents. (4) QAC × PDS had the smallest soil bulk density and largest porosity. Fractal dimension was negatively correlated with soil bulk density and positively correlated with soil total porosity and capillary porosity. These results indicate that the soil fractal dimension can well characterize the vegetation improvement on soil structure and properties in the earthy-rocky mountain areas of northern China

    Surface Nanocrystallization and Amorphization of Dual-Phase TC11 Titanium Alloys under Laser Induced Ultrahigh Strain-Rate Plastic Deformation

    No full text
    As an innovative surface technology for ultrahigh strain-rate plastic deformation, laser shock peening (LSP) was applied to the dual-phase TC11 titanium alloy to fabricate an amorphous and nanocrystalline surface layer at room temperature. X-ray diffraction, transmission electron microscopy, and high-resolution transmission electron microscopy (HRTEM) were used to investigate the microstructural evolution, and the deformation mechanism was discussed. The results showed that a surface nanostructured surface layer was synthesized after LSP treatment with adequate laser parameters. Simultaneously, the behavior of dislocations was also studied for different laser parameters. The rapid slipping, accumulation, annihilation, and rearrangement of dislocations under the laser-induced shock waves contributed greatly to the surface nanocrystallization. In addition, a 10 nm-thick amorphous structure layer was found through HRTEM in the top surface and the formation mechanism was attributed to the local temperature rising to the melting point, followed by its subsequent fast cooling

    Identification and verification of a PANoptosis-related long noncoding ribonucleic acid signature for predicting the clinical outcomes and immune landscape in lung adenocarcinoma

    No full text
    PANoptosis is a type of programmed cell death (PCD) characterised by apoptosis, necroptosis and pyroptosis. Long non-coding ribonucleic acids (lncRNAs) are participating in the malignant behaviour of tumours regulated by PCD. Nevertheless, the function of PANoptosis-associated lncRNAs in lung adenocarcinoma remains to be investigated. In this work, a PANoptosis-related lncRNA signature (PRLSig) was developed based on the least absolute shrinkage and selection operator algorithm. The stability and fitness of PRLSig were confirmed by systematic evaluation of Kaplan–Meier, Cox analysis algorithm, receiver operating characteristic analysis, stratification analysis. In addition, ESTIMATE, single sample gene set enrichment analysis, immune checkpoints and the cancer immunome database confirmed the predictive value of the PRLSig in immune microenvironment and helped to identify populations for which immunotherapy is advantageous. The present research provides novel insights to facilitate risk stratification and optimise personalised treatment for LUAD
    corecore