58 research outputs found

    t1-Noise Eliminated Dipolar Heteronuclear Multiple-Quantum Coherence Solid-State NMR Spectroscopy

    Get PDF
    Heteronuclear correlation (HETCOR) spectroscopy is one of the key tools in the arsenal of the solid-state NMR spectroscopist to probe spatial proximity between two different nuclei and enhance spectral resolution. Dipolar heteronuclear multiple-quantum coherence (D-HMQC) is a powerful technique that can be potentially utilized to obtain 1H detected 2D HETCOR solid-state NMR spectra of any NMR active nucleus. A long-standing problem in 1H detected D-HMQC solid-state NMR experiments is the presence of t1-noise which reduces sensitivity and impedes spectral interpretation. In this contribution, we describe novel pulse sequences, termed t1-noise eliminated (TONE) D-HMQC, that suppress t1-noise and can provide higher sensitivity and resolution than conventional D-HMQC. Monte-Carlo and numerical simulations confirm that t1-noise in conventional D-HMQC primarily occurs because random MAS frequency fluctuations cause variations in the NMR signal amplitude from scan to scan, leading to imperfect cancellation of uncorrelated signals by phase cycling. The TONE D-HMQC sequence uses 1H p-pulses to refocus the evolution of 1H CSA across each recoupling block, improving the stability of the pulse sequence to random MAS frequency fluctuations. The 1H refocusing pulses also restore the orthogonality of in-phase and anti-phase magnetization for all crystallite orientations, enabling the use of 90° flip-back or LG spin-lock trim pulses to reduce the intensity of uncorrelated signals. We demonstrate the application of these methods to acquire detected 2D 1H-35Cl and 1H-13C HETCOR spectra of histidine•HCl•H2O with reduced t1-noise. To show generality, we also apply these methods to obtain 2D 1H-17O spectra of 20%-17O fmoc-alanine and for the first time at natural abundance, 2D 1H-25Mg HETCOR spectra of magnesium hydroxide. The TONE D-HMQC sequences are also used to probe 1H-25Mg and 1H-27Al proximities in Mg-Al layered double hydroxides and confirm the even mixing of Mg and Al in these materials

    Metal–Organic‐Framework‐Derived Carbons: Applications as Solid‐Base Catalyst and Support for Pd Nanoparticles in Tandem Catalysis

    Get PDF
    The facile pyrolysis of a bipyridyl metal‐organic framework, MOF‐253, produces N‐doped porous carbons (Cz‐MOF‐253), which exhibit excellent catalytic activity in the Knoevenagel condensation reaction and outperform other nitrogen‐containing MOF‐derived carbons. More importantly, by virtue of their high Lewis basicity and porous nature, Cz‐MOF‐253‐supported Pd nanoparticles (Pd/Cz‐MOF‐253‐800) show excellent performance in a one‐pot sequential Knoevenagel condensation‐hydrogenation reaction

    The idemetric property: when most distances are (almost) the same

    Get PDF
    We introduce the idemetric property, which formalizes the idea that most nodes in a graph have similar distances between them, and which turns out to be quite standard amongst small-world network models. Modulo reasonable sparsity assumptions, we are then able to show that a strong form of idemetricity is actually equivalent to a very weak expander condition (PUMP). This provides a direct way of providing short proofs that small-world network models such as the Watts-Strogatz model are strongly idemetric (for a wide range of parameters), and also provides further evidence that being idemetric is a common property. We then consider how satisfaction of the idemetric property is relevant to algorithm design. For idemetric graphs, we observe, for example, that a single breadth-first search provides a solution to the all-pairs shortest paths problem, so long as one is prepared to accept paths which are of stretch close to 2 with high probability. Since we are able to show that Kleinberg's model is idemetric, these results contrast nicely with the well known negative results of Kleinberg concerning efficient decentralized algorithms for finding short paths: for precisely the same model as Kleinberg's negative results hold, we are able to show that very efficient (and decentralized) algorithms exist if one allows for reasonable preprocessing. For deterministic distributed routing algorithms we are also able to obtain results proving that less routing information is required for idemetric graphs than in the worst case in order to achieve stretch less than 3 with high probability: while Ί(n 2) routing information is required in the worst case for stretch strictly less than 3 on almost all pairs, for idemetric graphs the total routing information required is O(nlog(n))

    Ultrastrong Terahertz Emission from InN Nanopyramids on Single Crystal ZnO Substrates

    Get PDF
    The creation of high efficiency and room temperature terahertz (THz) emitters has long been expected in both scientific and industrial communities. Despite the recent progress in THz source such as quantum cascade lasers, high efficiency THz emitters capable of operating at room temperature are still elusive. Indium nitride (InN), a narrow bandgap semiconductor, has emerged as a promising THz emitter due to its unique electronic properties. However, the efficiency of InN THz emitters reported up to now is still far from theoretically predicted because of inadequately engineered electrical conduction and radiative coupling. In this study, the authors report a novel, high performance THz emitting structure consisting of nanoengineered InN micro/nanopyramid arrays on a single crystal zinc oxide (ZnO) substrate. With improved electronic conduction from Zn diffusion induced doping and enhanced radiation coupling benefiting from uniquely structured geometry, the InN nanopyramids yielded THz emission intensity is close to an order of magnitude stronger than that of p-type indium arsenide (InAs). These findings prove that InN is a promising THz material and of wide importance in material science, optical engineering sectors, etc

    Facile Fabrication of Hierarchical MOF–Metal Nanoparticle Tandem Catalysts for the Synthesis of Bioactive Molecules

    Get PDF
    Multifunctional metal–organic frameworks (MOFs) that possess permanent porosity are promising catalysts in organic transformation. Herein, we report the construction of a hierarchical MOF functionalized with basic aliphatic amine groups and polyvinylpyrrolidone-capped platinum nanoparticles (Pt NPs). The postsynthetic covalent modification of organic ligands increases basic site density in the MOF and simultaneously introduces mesopores to create a hierarchically porous structure. The multifunctional MOF is capable of catalyzing a sequential Knoevenagel condensation–hydrogenation–intramolecular cyclization reaction. The unique selective reduction of the nitro group to intermediate hydroxylamine by Pt NPs supported on MOF followed by intramolecular cyclization with a cyano group affords an excellent yield (up to 92%) to the uncommon quinoline N-oxides over quinolines. The hierarchical MOF and polyvinylpyrrolidone capping agent on Pt NPs synergistically facilitate the enrichment of substrates and thus lead to high activity in the reduction–intramolecular cyclization reaction. The bioactivity assay indicates that the synthesized quinoline N-oxides evidently inhibit the proliferation of lung cancer cells. Our findings demonstrate the feasibility of MOF-catalyzed direct synthesis of bioactive molecules from readily available compounds under mild conditions

    Dielectric constant engineering of organic semiconductors: effect of planarity and conjugation length

    Get PDF
    Bulk heterojunction organic solar cells continue to show steady photoconversion efficiency improvements. However, single component organic solar cells are a particularly attractive alternative due to the relative simplicity of device manufacture. It has been proposed that organic semiconductors with a high dielectric constant (≈10) could give rise to spontaneous free charge carrier generation upon photoexcitation. In this manuscript, factors are explored that affect the dielectric constant of organic semiconductors, particularly the optical-frequency dielectric constant. The properties of monomers, dimers and trimers of two isoelectronic families of materials that have acceptor units composed of one or two dicyanovinylbenzothiadiazole moieties and one to three donor units are compared. The donor components are composed of either fluorenyl or cyclopentadithiophene moieties with the same glycol-based solubilizing groups. It is found that chromophore planarity and orientation with respect to the substrate, and film density affect the optical and electronic properties of the materials, especially the high-frequency dielectric constant. The results also indicate that delocalization of the highest occupied and lowest unoccupied molecular orbitals is a critical factor. The dimer with two dicyanovinylbenzothiadiazole moieties and two dithienocyclopentadiene units is found to have the highest optical frequency dielectric constant and overall performance

    Dielectric constant engineering of organic semiconductors: effect of planarity and conjugation length

    Get PDF
    Bulk heterojunction organic solar cells continue to show steady photoconversion efficiency improvements. However, single component organic solar cells are a particularly attractive alternative due to the relative simplicity of device manufacture. It has been proposed that organic semiconductors with a high dielectric constant (≈10) could give rise to spontaneous free charge carrier generation upon photoexcitation. In this manuscript, factors are explored that affect the dielectric constant of organic semiconductors, particularly the optical-frequency dielectric constant. The properties of monomers, dimers and trimers of two isoelectronic families of materials that have acceptor units composed of one or two dicyanovinylbenzothiadiazole moieties and one to three donor units are compared. The donor components are composed of either fluorenyl or cyclopentadithiophene moieties with the same glycol-based solubilizing groups. It is found that chromophore planarity and orientation with respect to the substrate, and film density affect the optical and electronic properties of the materials, especially the high-frequency dielectric constant. The results also indicate that delocalization of the highest occupied and lowest unoccupied molecular orbitals is a critical factor. The dimer with two dicyanovinylbenzothiadiazole moieties and two dithienocyclopentadiene units is found to have the highest optical frequency dielectric constant and overall performance

    Pallas

    No full text

    t1-Noise Eliminated Dipolar Heteronuclear Multiple-Quantum Coherence Solid-State NMR Spectroscopy

    No full text
    Heteronuclear correlation (HETCOR) spectroscopy is one of the key tools in the arsenal of the solid-state NMR spectroscopist to probe spatial proximity between two different nuclei and enhance spectral resolution. Dipolar heteronuclear multiple-quantum coherence (D-HMQC) is a powerful technique that can be potentially utilized to obtain 1H detected 2D HETCOR solid-state NMR spectra of any NMR active nucleus. A long-standing problem in 1H detected D-HMQC solid-state NMR experiments is the presence of t1-noise which reduces sensitivity and impedes spectral interpretation. In this contribution, we describe novel pulse sequences, termed t1-noise eliminated (TONE) D-HMQC, that suppress t1-noise and can provide higher sensitivity and resolution than conventional D-HMQC. Monte-Carlo and numerical simulations confirm that t1-noise in conventional D-HMQC primarily occurs because random MAS frequency fluctuations cause variations in the NMR signal amplitude from scan to scan, leading to imperfect cancellation of uncorrelated signals by phase cycling. The TONE D-HMQC sequence uses 1H p-pulses to refocus the evolution of 1H CSA across each recoupling block, improving the stability of the pulse sequence to random MAS frequency fluctuations. The 1H refocusing pulses also restore the orthogonality of in-phase and anti-phase magnetization for all crystallite orientations, enabling the use of 90° flip-back or LG spin-lock trim pulses to reduce the intensity of uncorrelated signals. We demonstrate the application of these methods to acquire detected 2D 1H-35Cl and 1H-13C HETCOR spectra of histidine•HCl•H2O with reduced t1-noise. To show generality, we also apply these methods to obtain 2D 1H-17O spectra of 20%-17O fmoc-alanine and for the first time at natural abundance, 2D 1H-25Mg HETCOR spectra of magnesium hydroxide. The TONE D-HMQC sequences are also used to probe 1H-25Mg and 1H-27Al proximities in Mg-Al layered double hydroxides and confirm the even mixing of Mg and Al in these materials.</p

    LiU: Hiding Disk Access Latency for HPC Applications with a New SSD-Enabled Data Layout

    No full text
    Abstract—Unlike in the consumer electronics and personal computing areas, in the HPC environment hard disks can hardly be replaced by SSDs. The reasons include hard disk’s large capacity, very low price, and decent peak throughput. However, when latency dominates the I/O performance (e.g., when accessing random data), the hard disk’s performance can be compromised. If the issue of high latency could be effectively solved, the HPC community would enjoy a large, affordable and fast storage without having to replace disks completely with expensive SSDs. In this paper, we propose an almost latency-free hard-diskdominated storage system called LiU for HPC. The key technique is leveraging limited amount of SSD storage for its low-latency access, and changing data layout in a hybrid storage hierarchy with low-latency SSD at the top and high-latency hard disk a
    • …
    corecore