168 research outputs found
A two-step approach to model precipitation extremes in California based on max-stable and marginal point processes
In modeling spatial extremes, the dependence structure is classically
inferred by assuming that block maxima derive from max-stable processes.
Weather stations provide daily records rather than just block maxima. The point
process approach for univariate extreme value analysis, which uses more
historical data and is preferred by some practitioners, does not adapt easily
to the spatial setting. We propose a two-step approach with a composite
likelihood that utilizes site-wise daily records in addition to block maxima.
The procedure separates the estimation of marginal parameters and dependence
parameters into two steps. The first step estimates the marginal parameters
with an independence likelihood from the point process approach using daily
records. Given the marginal parameter estimates, the second step estimates the
dependence parameters with a pairwise likelihood using block maxima. In a
simulation study, the two-step approach was found to be more efficient than the
pairwise likelihood approach using only block maxima. The method was applied to
study the effect of El Ni\~{n}o-Southern Oscillation on extreme precipitation
in California with maximum daily winter precipitation from 35 sites over 55
years. Using site-specific generalized extreme value models, the two-step
approach led to more sites detected with the El Ni\~{n}o effect, narrower
confidence intervals for return levels and tighter confidence regions for risk
measures of jointly defined events.Comment: Published at http://dx.doi.org/10.1214/14-AOAS804 in the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Composite Cyclotomic Fourier Transforms with Reduced Complexities
Discrete Fourier transforms~(DFTs) over finite fields have widespread
applications in digital communication and storage systems. Hence, reducing the
computational complexities of DFTs is of great significance. Recently proposed
cyclotomic fast Fourier transforms (CFFTs) are promising due to their low
multiplicative complexities. Unfortunately, there are two issues with CFFTs:
(1) they rely on efficient short cyclic convolution algorithms, which has not
been investigated thoroughly yet, and (2) they have very high additive
complexities when directly implemented. In this paper, we address both issues.
One of the main contributions of this paper is efficient bilinear 11-point
cyclic convolution algorithms, which allow us to construct CFFTs over
GF. The other main contribution of this paper is that we propose
composite cyclotomic Fourier transforms (CCFTs). In comparison to previously
proposed fast Fourier transforms, our CCFTs achieve lower overall complexities
for moderate to long lengths, and the improvement significantly increases as
the length grows. Our 2047-point and 4095-point CCFTs are also first efficient
DFTs of such lengths to the best of our knowledge. Finally, our CCFTs are also
advantageous for hardware implementations due to their regular and modular
structure.Comment: submitted to IEEE trans on Signal Processin
Reduced-Complexity Decoder of Long Reed-Solomon Codes Based on Composite Cyclotomic Fourier Transforms
Long Reed-Solomon (RS) codes are desirable for digital communication and
storage systems due to their improved error performance, but the high
computational complexity of their decoders is a key obstacle to their adoption
in practice. As discrete Fourier transforms (DFTs) can evaluate a polynomial at
multiple points, efficient DFT algorithms are promising in reducing the
computational complexities of syndrome based decoders for long RS codes. In
this paper, we first propose partial composite cyclotomic Fourier transforms
(CCFTs) and then devise syndrome based decoders for long RS codes over large
finite fields based on partial CCFTs. The new decoders based on partial CCFTs
achieve a significant saving of computational complexities for long RS codes.
Since partial CCFTs have modular and regular structures, the new decoders are
suitable for hardware implementations. To further verify and demonstrate the
advantages of partial CCFTs, we implement in hardware the syndrome computation
block for a shortened RS code over GF. In comparison
to previous results based on Horner's rule, our hardware implementation not
only has a smaller gate count, but also achieves much higher throughputs.Comment: 7 pages, 1 figur
Highly Coordinated Gene Regulation in Mouse Skeletal Muscle Regeneration
Mammalian skeletal muscles are capable of regeneration after injury. Quiescent satellite cells are activated to reenter the cell cycle and to differentiate for repair, recapitulating features of myogenesis during embryonic development. To understand better the molecular mechanism involved in this process in vivo, we employed high density cDNA microarrays for gene expression profiling in mouse tibialis anterior muscles after a cardiotoxin injection. Among 16,267 gene elements surveyed, 3,532 elements showed at least a 2.5-fold change at one or more time points during a 14-day time course. Hierarchical cluster analysis and semiquantitative reverse transcription-PCR showed induction of genes important for cell cycle control and DNA replication during the early phase of muscle regeneration. Subsequently, genes for myogenic regulatory factors, a group of imprinted genes and genes with functions to inhibit cell cycle progression and promote myogenic differentiation, were induced when myogenic stem cells started to differentiate. Induction of a majority of these genes, including E2f1 and E2f2, was abolished in muscles lacking satellite cell activity after gamma radiation. Regeneration was severely compromised in E2f1 null mice but not affected in E2f2 null mice. This study identifies novel genes potentially important for muscle regeneration and reveals highly coordinated myogenic cell proliferation and differentiation programs in adult skeletal muscle regeneration in vivo
In situ growth of ultrathin Co-MOF nanosheets on Α-Fe2O3 hematite nanorods for efficient photoelectrochemical water oxidation
Efficient charge transport is an important factor in photoelectrochemical (PEC) water splitting. The charge transfer at the semiconductor/electrolyte interface is of great importance, especially for the complex water oxidation reaction. In this study, we explored the feasibility of improving charge transfer efficiency at the interface of semiconductor/electrolyte by in situ growth of Co based Metal-Organic Frame work (Co-MOF) through a facile ion-exchanging method. Under optimized conditions, the Co-MOF nanosheet-modified hematite gave a photocurrent density of 2.0 mA cm−2 (200% improvement) at 1.23 VRHE with a cathodic shift of 180 mV in the photocurrent onset potential, in comparison to bare α-Fe2O3 (0.71 mA cm−[email protected] VRHE). To elucidate the role of Co-MOF, X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy and Mott-Schottky measurements were carried out. It was found that the atomically distributed Co2+ in Co-MOF possessed excellent hole storage capability and charge transfer efficiency, as evidenced by the high surface capacitance and extremely low surface charge transfer resistance
- …