225 research outputs found

    Cloning and function analysis of DlWRKY9 gene in longan (Dimocarpus longan)

    Get PDF
    WRKY is one of the largest plant transcription factors (TFs) which is widely involved in plant growth, development, and responses to stresses. In the present study, a WRKY TF DlWRKY9 was cloned from longan (Dimocarpus longan). The coding sequence (CDS) of DlWRKY9 is 762 bp in length and encodes 253 amino acids. It has a typical WRKY domain and zinc finger structure which belongs to type IIa WRKY protein. The molecular weight of DlWRKY9 protein was 30.27kda and the theoretical isoelectric point (PI) was 5.24. It is an unstable hydrophilic protein. The secondary structure of DlWRKY9 protein consists of helical structure (17.39%), extended chain (8.70%) and other structures (turn and random coil) (73.91%). The amino acid sequence of DlWRKY9 protein had the highest similarity with DlWRKY9 (xp_006450293.1) of citrus Clementina. DlWRKY9 gene promoter elements contain light, abscisic acid, gibberellin, jasmonic acid and other response elements. The results of qRT-PCR showed that the relative expression level of DlWRKY9 gene in pericarp was higher, followed by young fruits and floral organs. Meanwhile, DlWRKY9 gene specifically down-regulated in the early stage of flower induction in ‘Sijimi’ (SJ) longan. The results of transient expression of Arabidopsis protoplasts showed that the fluorescence signal was mainly concentrated in the nucleus. Moreover, overexpression of DlWRKY9 in Arabidopsis promoted early flowering. These results provide useful information for revealing the biological roles of DlWRKY9 in longan and increase our understanding of the WRKY family in fruit trees

    Cloning and function analysis of DlWRKY9 gene in longan (Dimocarpus longan)

    Get PDF
    WRKY is one of the largest plant transcription factors (TFs) which is widely involved in plant growth, development, and responses to stresses. In the present study, a WRKY TF DlWRKY9 was cloned from longan (Dimocarpus longan). The coding sequence (CDS) of DlWRKY9 is 762 bp in length and encodes 253 amino acids. It has a typical WRKY domain and zinc finger structure which belongs to type IIa WRKY protein. The molecular weight of DlWRKY9 protein was 30.27kda and the theoretical isoelectric point (PI) was 5.24. It is an unstable hydrophilic protein. The secondary structure of DlWRKY9 protein consists of helical structure (17.39%), extended chain (8.70%) and other structures (turn and random coil) (73.91%). The amino acid sequence of DlWRKY9 protein had the highest similarity with DlWRKY9 (xp_006450293.1) of citrus Clementina. DlWRKY9 gene promoter elements contain light, abscisic acid, gibberellin, jasmonic acid and other response elements. The results of qRT-PCR showed that the relative expression level of DlWRKY9 gene in pericarp was higher, followed by young fruits and floral organs. Meanwhile, DlWRKY9 gene specifically down-regulated in the early stage of flower induction in ‘Sijimi’ (SJ) longan. The results of transient expression of Arabidopsis protoplasts showed that the fluorescence signal was mainly concentrated in the nucleus. Moreover, overexpression of DlWRKY9 in Arabidopsis promoted early flowering. These results provide useful information for revealing the biological roles of DlWRKY9 in longan and increase our understanding of the WRKY family in fruit trees

    Functional identification of DNA demethylase gene CaROS1 in pepper (Capsicum annuum L.) involved in salt stress

    Get PDF
    Pepper, which is a widely cultivated important vegetable, is sensitive to salt stress, and the continuous intensification of soil salinization has affected pepper production worldwide. However, genes confer to salt tolerance are rarely been cloned in pepper. Since the REPRESSOR OF SILENCING 1 (ROS1) is a DNA demethylase that plays a crucial regulatory role in plants in response to various abiotic stresses, including salt stress. We cloned a ROS1 gene in pepper, named CaROS1 (LOC107843637). Bioinformatic analysis showed that the CaROS1 protein contains the HhH-GPD glycosylase and RRM_DME domains. qRT-PCR analyses showed that the CaROS1 was highly expressed in young and mature fruits of pepper and rapidly induced by salt stress. Functional characterization of the CaROS1 was performed by gene silencing in pepper and overexpressing in tobacco, revealed that the CaROS1 positively regulates salt tolerance ability. More detailly, CaROS1-silenced pepper were more sensitive to salt stress, and their ROS levels, relative conductivity, and malondialdehyde content were significantly higher in leaves than those of the control plants. Besides, CaROS1-overexpressing tobacco plants were more tolerant to salt stress, with a higher relative water content, total chlorophyll content, and antioxidant enzyme activity in leaves compared to those of WT plants during salt stress. These results revealed the CaROS1 dose play a role in salt stress response, providing the theoretical basis for salt tolerance genetic engineering breeding in pepper

    ESX Secretion-Associated Protein C From Mycobacterium tuberculosis Induces Macrophage Activation Through the Toll-Like Receptor-4/Mitogen-Activated Protein Kinase Signaling Pathway

    Get PDF
    Mycobacterium tuberculosis, as a facultative intracellular pathogen, can interact with host macrophages and modulate macrophage function to influence innate and adaptive immunity. Proteins secreted by the ESX-1 secretion system are involved in this relationship. Although the importance of ESX-1 in host-pathogen interactions and virulence is well-known, the primary role is ascribed to EsxA (EAST-6) in mycobacterial pathogenesis and the functions of individual components in the interactions between pathogens and macrophages are still unclear. Here, we investigated the effects of EspC on macrophage activation. The EspC protein is encoded by an espA/C/D cluster, which is not linked to the esx-1 locus, but is essential for the secretion of the major virulence factors of ESX-1, EsxA and EsxB. Our results showed that both EspC protein and EspC overexpression in M. smegmatis induced pro-inflammatory cytokines and enhanced surface marker expression. This mechanism was dependent on Toll-like receptor 4 (TLR4), as demonstrated using EspC-treated macrophages from TLR4−/− mice, leading to decreased pro-inflammatory cytokine secretion and surface marker expression compared with those from wild-type mice. Immunoprecipitation and immunofluorescence assays showed that EspC interacted with TLR4 directly. Moreover, EspC could activate macrophages and promote antigen presentation by inducing mitogen-activated protein kinase (MAPK) phosphorylation and nuclear factor-κB activation. The EspC-induced cytokine expression, surface marker upregulation, and MAPK signaling activation were inhibited when macrophages were blocked with anti-TLR4 antibodies or pretreated with MAPK inhibitors. Furthermore, our results showed that EspC overexpression enhanced the survival of M. smegmatis within macrophages and under stress conditions. Taken together, our results indicated that EspC may be another ESX-1 virulence factor that not only modulates the host innate immune response by activating macrophages through TLR4-dependent MAPK signaling but also plays an important role in the survival of pathogenic mycobacteria in host cells

    Comparative genomics reveals adaptive evolution of Asian tapeworm in switching to a new intermediate host

    Get PDF
    Taenia saginata, Taenia solium and Taenia asiatica (beef, pork and Asian tapeworms, respectively) are parasitic flatworms of major public health and food safety importance. Among them, T. asiatica is a newly recognized species that split from T. saginata via an intermediate host switch ∼1.14 Myr ago. Here we report the 169- and 168-Mb draft genomes of T. saginata and T. asiatica. Comparative analysis reveals that high rates of gene duplications and functional diversifications might have partially driven the divergence between T. asiatica and T. saginata. We observe accelerated evolutionary rates, adaptive evolutions in homeostasis regulation, tegument maintenance and lipid uptakes, and differential/specialized gene family expansions in T. asiatica that may favour its hepatotropism in the new intermediate host. We also identify potential targets for developing diagnostic or intervention tools against human tapeworms. These data provide new insights into the evolution of Taenia parasites, particularly the recent speciation of T. asiatica

    Single-cell profiling reveals distinct immune response landscapes in tuberculous pleural effusion and non-TPE

    Get PDF
    BackgroundTuberculosis (TB) is caused by Mycobacterium tuberculosis (Mtb) and remains a major health threat worldwide. However, a detailed understanding of the immune cells and inflammatory mediators in Mtb-infected tissues is still lacking. Tuberculous pleural effusion (TPE), which is characterized by an influx of immune cells to the pleural space, is thus a suitable platform for dissecting complex tissue responses to Mtb infection.MethodsWe employed singe-cell RNA sequencing to 10 pleural fluid (PF) samples from 6 patients with TPE and 4 non-TPEs including 2 samples from patients with TSPE (transudative pleural effusion) and 2 samples with MPE (malignant pleural effusion).ResultCompared to TSPE and MPE, TPE displayed obvious difference in the abundance of major cell types (e.g., NK, CD4+T, Macrophages), which showed notable associations with disease type. Further analyses revealed that the CD4 lymphocyte population in TPE favored a Th1 and Th17 response. Tumor necrosis factors (TNF)-, and XIAP related factor 1 (XAF1)-pathways induced T cell apoptosis in patients with TPE. Immune exhaustion in NK cells was an important feature in TPE. Myeloid cells in TPE displayed stronger functional capacity for phagocytosis, antigen presentation and IFN-γ response, than TSPE and MPE. Systemic elevation of inflammatory response genes and pro-inflammatory cytokines were mainly driven by macrophages in patients with TPE.ConclusionWe provide a tissue immune landscape of PF immune cells, and revealed a distinct local immune response in TPE and non-TPE (TSPE and MPE). These findings will improve our understanding of local TB immunopathogenesis and provide potential targets for TB therapy

    Genome-Wide Association Study of Lung Adenocarcinoma in East Asia and Comparison With a European Population

    Get PDF
    Lung adenocarcinoma is the most common type of lung cancer. Known risk variants explain only a small fraction of lung adenocarcinoma heritability. Here, we conducted a two-stage genome-wide association study of lung adenocarcinoma of East Asian ancestry (21,658 cases and 150,676 controls; 54.5% never-smokers) and identified 12 novel susceptibility variants, bringing the total number to 28 at 25 independent loci. Transcriptome-wide association analyses together with colocalization studies using a Taiwanese lung expression quantitative trait loci dataset (n = 115) identified novel candidate genes, including FADS1 at 11q12 and ELF5 at 11p13. In a multi-ancestry meta-analysis of East Asian and European studies, four loci were identified at 2p11, 4q32, 16q23, and 18q12. At the same time, most of our findings in East Asian populations showed no evidence of association in European populations. In our studies drawn from East Asian populations, a polygenic risk score based on the 25 loci had a stronger association in never-smokers vs. individuals with a history of smoking (Pinteraction = 0.0058). These findings provide new insights into the etiology of lung adenocarcinoma in individuals from East Asian populations, which could be important in developing translational applications
    • …
    corecore