8,893 research outputs found
Strong completeness for a class of stochastic differential equations with irregular coefficients
We prove the strong completeness for a class of non-degenerate SDEs, whose
coefficients are not necessarily uniformly elliptic nor locally Lipschitz
continuous nor bounded. Moreover, for each , the solution flow is
weakly differentiable and for each there is a positive number such
that for all , the solution flow belongs to the Sobolev
space W_{\loc}^{1,p}. The main tool for this is the approximation of the
associated derivative flow equations. As an application a differential formula
is also obtained
Dyson-Schwinger Equations with a Parameterized Metric
We construct and solve the Dyson-Schwinger equation (DSE) of quark propagator
with a parameterized metric, which connects the Euclidean metric with the
Minkowskian one. We show, in some models, the Minkowskian vacuum is different
from the Euclidean vacuum. The usual analytic continuation of Green function
does not make sense in these cases. While with the algorithm we proposed and
the quark-gluon vertex ansatz which preserves the Ward-Takahashi identity, the
vacuum keeps being unchanged in the evolution of the metric. In this case,
analytic continuation becomes meaningful and can be fully carried out.Comment: 10 pages, 7 figures. To appear in Physical Review
Effects of tidally enhanced stellar wind on the horizontal branch morphology of globular clusters
Metallicity is the first parameter to influence the horizontal branch (HB)
morphology of globular clusters (GCs). It has been found, however, that some
other parameters may also play an important role in affecting the morphology.
While the nature of these important parameters remains unclear, they are
believed to be likely correlated with wind mass-loss of red giants, since this
mass loss determines their subsequent locations on the HB. Unfortunately, the
mass loss during the red giant stages of the stellar evolution is poorly
understood at present. The stellar winds of red giants may be tidally enhanced
by companion stars if they are in binary systems. We investigate evolutionary
consequences of red giants in binaries by including tidally enhanced stellar
winds, and examine the effects on the HB morphology of GCs. We find that red,
blue, and extreme horizontal branch stars are all produced under the effects of
tidally enhanced stellar wind without any additional assumptions on the
mass-loss dispersion. Furthermore, the horizontal branch morphology is found to
be insensitive to the tidal enhancement parameter, Bw. We compare our
theoretical results with the observed horizontal branch morphology of globular
cluster NGC 2808, and find that the basic morphology of the horizontal branch
can be well reproduced. The number of blue horizontal branch stars in our
calculations, however, is lower than that of NGC 2808.Comment: 7 pages, 4 figures, 2 tables, accepted for publication in Astronomy &
Astrophysic
Phase diagram and critical endpoint for strongly-interacting quarks
We introduce a method based on the chiral susceptibility, which enables one
to draw a phase diagram in the chemical-potential/temperature plane for
strongly-interacting quarks whose interactions are described by any reasonable
gap equation, even if the diagrammatic content of the quark-gluon vertex is
unknown. We locate a critical endpoint (CEP) at (\mu^E,T^E) ~ (1.0,0.9)T_c,
where T_c is the critical temperature for chiral symmetry restoration at \mu=0;
and find that a domain of phase coexistence opens at the CEP whose area
increases as a confinement length-scale grows.Comment: 4 pages, 3 figure
Classification of multipartite entanglement containing infinitely many kinds of states
We give a further investigation of the range criterion and Low-to-High Rank
Generating Mode (LHRGM) introduced in \cite{Chen}, which can be used for the
classification of states under reversible local filtering
operations. By using of these techniques, we entirely classify the family of
states, which actually contains infinitely many kinds of
states. The classifications of true entanglement of
and systems are briefly listed respectively.Comment: 11 pages, revte
Phase diagram and thermal properties of strong-interaction matter
We introduce a novel procedure for computing the (mu,T)-dependent pressure in
continuum QCD; and therefrom obtain a complex phase diagram and predictions for
thermal properties of the system, providing the in-medium behaviour of the
trace anomaly, speed of sound, latent heat and heat capacity.Comment: 6 pages, 4 figures. Minor amendments in the version accepted for
publicatio
- …
