6,784 research outputs found

    Exploring open-charm decay mode ΛcΛˉc\Lambda_c\bar{\Lambda}_c of charmonium-like state Y(4630)Y(4630)

    Full text link
    The newly observed X,Y,ZX, Y, Z exotic states are definitely not in the standard QQˉ′Q\bar Q' structures, thus their existence composes a challenge to our understanding on the fundamental principles of hadron physics. Therefore the studies on their decay patterns which are determined by the non-perturbative QCD will definitely shed light on the concerned physics. Generally the four-quark states might be in a molecular state or tetraquark or their mixture. In this work, we adopt the suggestion that Y(4630)Y(4630) is a charmonium-like tetraquark made of a diquark and an anti-diquark. If it is true, its favorable decay mode should be Y(4630)Y(4630) decaying into an open-charm baryon pair, since such a transition occurs via strong interaction and is super-OZI-allowed. In this work, we calculate the decay width of Y(4630)→ΛcΛˉcY(4630)\to\Lambda_c\bar{\Lambda}_c in the framework of the quark pair creation (QPC) model. Our numerical results on the partial width computed in the tetraquark configuration coincide with the Belle data within a certain error tolerance.Comment: 8 pages, 4 figures, 1 table. Accepted by Eur. Phys. J.

    Re-Study on the wave functions of Υ(nS)\Upsilon(nS) states in LFQM and the radiative decays of Υ(nS)→ηb+γ\Upsilon(nS)\to \eta_b+\gamma

    Full text link
    The Light-front quark model (LFQM) has been applied to calculate the transition matrix elements of heavy hadron decays. However, it is noted that using the traditional wave functions of the LFQM given in literature, the theoretically determined decay constants of the Υ(nS)\Upsilon(nS) obviously contradict to the data. It implies that the wave functions must be modified. Keeping the orthogonality among the nSnS states and fitting their decay constants we obtain a series of the wave functions for Υ(nS)\Upsilon(nS). Based on these wave functions and by analogy to the hydrogen atom, we suggest a modified analytical form for the Υ(nS)\Upsilon(nS) wave functions. By use of the modified wave functions, the obtained decay constants are close to the experimental data. Then we calculate the rates of radiative decays of Υ(nS)→ηb+γ\Upsilon(nS)\to \eta_b+\gamma. Our predictions are consistent with the experimental data on decays Υ(3S)→ηb+γ\Upsilon(3S)\to \eta_b+\gamma within the theoretical and experimental errors.Comment: 10 pages, 2 figures, 1 table. Typos corrected and more discussions added. accepted for publication in Physical Review
    • …
    corecore