54 research outputs found
Particle Emission-dependent Timing Noise of Pulsars?
Though pulsars spin regularly, the differences between the observed and
predicted ToA (time of arrival), known as "timing noise", can still reach a few
milliseconds or more. We try to understand the noise in this paper. As proposed
by Xu & Qiao in 2001, both dipole radiation and particle emission would result
in pulsar braking. Accordingly, possible fluctuation of particle current flow
is suggested here to contribute significant ToA variation of pulsars. We find
that the particle emission fluctuation could lead to timing noise which can't
be eliminated in timing process, and that a longer period fluctuation would
arouse a stronger noise. The simulated timing noise profile and amplitude are
in accord with the observed timing behaviors on the timescale of years.Comment: 6 pages, 2 figures. (Accepted by Chin. Phys. Lett.
A new parametric equation of state and quark stars
It is still a matter of debate to understand the equation of state of cold
supra-nuclear matter in compact stars because of unknown on-perturbative strong
interaction between quarks. Nevertheless, it is speculated from an
astrophysical view point that quark clusters could form in cold quark matter
due to strong coupling at realistic baryon densities. Although it is hard to
calculate this conjectured matter from first principles, one can expect the
inter-cluster interaction to share some general features to nucleon-nucleon
interaction. We adopt a two-Gaussian component soft-core potential with these
general features and show that quark clusters can form stable simple cubic
crystal structure if we assume Gaussian form wave function. With this
parameterizing, Tolman-Oppenheimer-Volkoff equation is solved with reasonable
constrained parameter space to give mass-radius relation of crystalline solid
quark star. With baryon densities truncated at 2 times nuclear density at
surface and range of interaction fixed at 2fm we can reproduce similar
mass-radius relation to that obtained with bag model equations of state. The
maximum mass ranges from about 0.5 to 3 solar mass. Observed maximum pulsar
mass (about 2 solar mass) is then used to constrain parameters of this simple
interaction potential.Comment: 5 pages, 2 figure
Different Effects of Total Bilirubin on 90-Day Mortality in Hospitalized Patients With Cirrhosis and Advanced Fibrosis: A Quantitative Analysis
Introduction: Total bilirubin (TB) is a major prognosis predictor representing liver failure in patients with acute on chronic liver failure (ACLF). However, the cutoff value of TB for liver failure and whether the same cutoff could be applied in both cirrhotic and non-cirrhotic patients remain controversial. There is a need to obtain the quantitative correlation between TB and short-term mortality via evidence-based methods, which is critical in establishing solid ACLF diagnostic criteria.Methods: Patients hospitalized with cirrhosis or advanced fibrosis (FIB-4 > 1.45) were studied. TB and other variables were measured at baseline. The primary outcome was 90-day transplantation-free mortality. Multi-variable Cox proportional hazard model was used to present the independent risk of mortality due to TB. Generalized additive model and second derivate (acceleration) were used to plot the “TB-mortality correlation curves.” The mathematical (maximum acceleration) and clinical (adjusted 28-day transplantation-free mortality rate reaching 15%) TB cutoffs for liver failure were both calculated.Results: Among the 3,532 included patients, the number of patients with cirrhosis and advanced fibrosis were 2,592 and 940, respectively, of which cumulative 90-day mortality were 16.6% (430/2592) and 7.4% (70/940), respectively. Any increase of TB was found the independent risk factor of mortality in cirrhotic patients, while only TB >12 mg/dL independently increased the risk of mortality in patients with advanced fibrosis. In cirrhotic patients, the mathematical TB cutoff for liver failure is 14.2 mg/dL, with 23.3% (605/2592) patients exceeding it, corresponding to 13.3 and 25.0% adjusted 28- and 90-day mortality rate, respectively. The clinical TB cutoff for is 18.1 mg/dL, with 18.2% (471/2592) patients exceeding it. In patients with advanced fibrosis, the mathematical TB cutoff is 12.1 mg/dL, 33.1% (311/940) patients exceeding it, corresponding to 2.9 and 8.0% adjusted 28- and 90-day mortality rate, respectively; the clinical TB cutoff was 36.0 mg/dL, 1.3% (12/940) patients above it.Conclusion: This study clearly demonstrated the significantly different impact of TB on 90-day mortality in patients with cirrhosis and advanced fibrosis, proving that liver failure can be determined by TB alone in cirrhosis but not in advanced fibrosis. The proposed TB cutoffs for liver failure provides solid support for the establishment of ACLF diagnostic criteria
Oxygen tension modulates cell function in an in vitro three-dimensional glioblastoma tumor model
Hypoxia is a typical feature of the tumor microenvironment, one of the most critical factors affecting cell behavior and tumor progression. However, the lack of tumor models able to precisely emulate natural brain tumor tissue has impeded the study of the effects of hypoxia on the progression and growth of tumor cells. This study reports a three-dimensional (3D) brain tumor model obtained by encapsulating U87MG (U87) cells in a hydrogel containing type I collagen. It also documents the effect of various oxygen concentrations (1%, 7%, and 21%) in the culture environment on U87 cell morphology, proliferation, viability, cell cycle, apoptosis rate, and migration. Finally, it compares two-dimensional (2D) and 3D cultures. For comparison purposes, cells cultured in flat culture dishes were used as the control (2D model). Cells cultured in the 3D model proliferated more slowly but had a higher apoptosis rate and proportion of cells in the resting phase (G0 phase)/gap I phase (G1 phase) than those cultured in the 2D model. Besides, the two models yielded significantly different cell morphologies. Finally, hypoxia (e.g., 1% O2) affected cell morphology, slowed cell growth, reduced cell viability, and increased the apoptosis rate in the 3D model. These results indicate that the constructed 3D model is effective for investigating the effects of biological and chemical factors on cell morphology and function, and can be more representative of the tumor microenvironment than 2D culture systems. The developed 3D glioblastoma tumor model is equally applicable to other studies in pharmacology and pathology.This work was supported by the National Nat ural Science Foundation of China (No. 52275291), the Fundamental Research Funds for the Central Universities, and the Program for Innovation Team of Shaanxi Province, China (No. 2023-CX-TD-17)
ciRS-7 Promotes the Proliferation and Migration of Papillary Thyroid Cancer by Negatively Regulating the miR-7/Epidermal Growth Factor Receptor Axis
Purpose. The incidence of papillary thyroid cancer (PTC) is increasing, and traditional diagnostic methods are unsatisfactory. Therefore, identifying novel prognostic markers is very important. ciRS-7 has been found to play an important role in many cancers, but its role in PTC has not been reported. This study was performed to evaluate the biological role and mechanism of ciRS-7 in PTC. Material and Methods. The expression of ciRS-7 in PTC tissues and the matched adjacent tissues was determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The PTC cell lines (TPC-1 and BCPAP) were used to evaluate the role of ciRS-7. ciRS-7-siRNA and overexpression plasmid were constructed and transfected into PTC cells. A CCK-8 assay and colony formation assay were performed to explore the effects of ciRS-7 on cell proliferation. Annexin V/PI staining and FACS detection were used to detect cell apoptosis. Wound healing assay was performed to detect cell migration. A transwell assay was conducted to explore the effects of ciRS-7 on invasion and migration. Western blotting was performed to evaluate protein expression. The luciferase reporter system was used to determine the underlying mechanism of miR-7. Result. ciRS-7 was highly expressed in PTC tissues and cell lines compared with the corresponding controls. In vitro study showed that ciRS-7 silencing suppressed proliferation, migration, and invasion of TPC-1 and BCPAP. Mechanistically, the effects of ciRS-7 on invasion and migration may be related to epithelial-mesenchymal transition (EMT). ciRS-7 silencing could attenuate effects on PTC cells induced by miR-7 knockdown. Epidermal growth factor receptor (EGFR), which was demonstrated to be a target of miR-7, decreased significantly in ciRS-7-siRNA PTC cells. Overexpression of EGFR also attenuated effects of PTC cells induced by silencing ciRS-7. Conclusion. ciRS-7 was significantly upregulated in PTC tissues, and it promoted the progression of PTC by regulating the miR-7/EGFR axis. ciRS-7 is a promising prognostic biomarker and therapeutic target in PTC
- …