5,290 research outputs found
Stochastic Dynamics of Electrical Membrane with Voltage-Dependent Ion Channel Fluctuations
Brownian ratchet like stochastic theory for the electrochemical membrane
system of Hodgkin-Huxley (HH) is developed. The system is characterized by a
continuous variable , representing mobile membrane charge density, and
a discrete variable representing ion channel conformational dynamics. A
Nernst-Planck-Nyquist-Johnson type equilibrium is obtained when multiple
conducting ions have a common reversal potential. Detailed balance yields a
previously unknown relation between the channel switching rates and membrane
capacitance, bypassing Eyring-type explicit treatment of gating charge
kinetics. From a molecular structural standpoint, membrane charge is a
more natural dynamic variable than potential ; our formalism treats
-dependent conformational transition rates as intrinsic
parameters. Therefore in principle, vs. is experimental
protocol dependent,e.g., different from voltage or charge clamping
measurements. For constant membrane capacitance per unit area and
neglecting membrane potential induced by gating charges, , and
HH's formalism is recovered. The presence of two types of ions, with different
channels and reversal potentials, gives rise to a nonequilibrium steady state
with positive entropy production . For rapidly fluctuating channels, an
expression for is obtained.Comment: 8 pages, two figure
Three-generation neutrino oscillations in curved spacetime
Three-generation MSW effect in curved spacetime is studied and a brief
discussion on the gravitational correction to the neutrino self-energy is
given. The modified mixing parameters and corresponding conversion
probabilities of neutrinos after traveling through celestial objects of
constant densities are obtained. The method to distinguish between the normal
hierarchy and inverted hierarchy is discussed in this framework. Due to the
gravitational redshift of energy, in some extreme situations, the resonance
energy of neutrinos might be shifted noticeably and the gravitational effect on
the self-energy of neutrino becomes significant at the vicinities of spacetime
singularities.Comment: 25 pages, 5 figures, 2 tables. Some changes are made according to
referee's suggestions. The final version is to be published at Nuclear
Physics
Effects of density-dependent quark mass on phase diagram of three-flavor quark matter
Considering the density dependence of quark mass, we investigate the phase
transition between the (unpaired) strange quark matter and the
color-flavor-locked matter, which are supposed to be two candidates for the
ground state of strongly interacting matter. We find that if the current mass
of strange quark is small, the strange quark matter remains stable unless
the baryon density is very high. If is large, the phase transition from
the strange quark matter to the color-flavor-locked matter in particular to its
gapless phase is found to be different from the results predicted by previous
works. A complicated phase diagram of three-flavor quark matter is presented,
in which the color-flavor-locked phase region is suppressed for moderate
densities.Comment: 4 figure
Strange sea asymmetry in nucleons
We evaluate the medium effects in nucleon which can induce an asymmetry of
the strange sea. The short-distance effects determined by the weak interaction
can give rise to where is the medium-induced mass of strange quark by a few KeV at
most, but the long-distance effects by strong interaction could be sizable.Comment: 4 pages and no figures, Talk presented at the Third
Circum-Pan-Pacific Symposium on "High Energy Spin Physics", Oct. 8-13, 2001,
Beijing, Chin
Lifshitz Scaling Effects on Holographic Superconductors
Via numerical and analytical methods, the effects of the Lifshitz dynamical
exponent on holographic superconductors are studied in some detail,
including wave and wave models. Working in the probe limit, we find
that the behaviors of holographic models indeed depend on concrete value of
. We obtain the condensation and conductivity in both Lifshitz black hole
and soliton backgrounds with general . For both wave and wave models
in the black hole backgrounds, as increases, the phase transition becomes
more difficult and the growth of conductivity is suppressed. For the Lifshitz
soliton backgrounds, when increases (), the critical chemical
potential decreases in the wave cases but increases in the wave cases.
For wave models in both Lifshitz black hole and soliton backgrounds, the
anisotropy between the AC conductivity in different spatial directions is
suppressed when increases. The analytical results uphold the numerical
results.Comment: Typos corrected; Footnote added; References added; To be published in
Nuclear Physics
- …