2,671 research outputs found

    Whole BcB_c meson spectroscopy under the unquenched picture

    Full text link
    In this work, we investigate the spectroscopy of higher BcB_c mesons, with a special focus on the consideration of the unquenched effects. To account for such effects, we employ the modified Godfrey-Isgur model and introduce a screening potential. The resulting mass spectrum of the concerned higher BcB_c states is then presented, showing significant deviations after considering the unquenched effects. This emphasizes the importance of considering the unquenched effects when studying of the higher BcB_c mesons. Furthermore, we determine the corresponding spatial wave functions of these BcB_c mesons, which have practical applications in subsequent studies of their decays. These decays include two-body Okuba-Zweig-Iizuka allowed strong decays, dipion transitions between BcB_c mesons, radiative decays, and some typical weak decays. With the ongoing high-luminosity upgrade of the Large Hadron Collider, we expect the discovery of additional BcB_c states in the near future. The knowledge gained from the mass spectrum and the different decay modes will undoubtedly provide valuable insights for future experimental explorations of these higher BcB_c mesons.Comment: 30 pages, 7 figures and 17 table

    4,6-Dibromo-2,3-dimethyl­phenol

    Get PDF
    The mol­ecule of the title compound, C8H8Br2O, is approximately planar with a maximum deviation of 0.063 (1) Å for one of the Br atoms. In the crystal, adjacent mol­ecules are joined inter­molecular O—H⋯O hydrogen bonds, forming chains parallel to [010]. The structure also features a short Br⋯Br inter­action of 3.362 (1) Å

    Room-Temperature Sodium-Sulfur Batteries: A Comprehensive Review on Research Progress and Cell Chemistry

    Get PDF
    Room temperature sodium-sulfur (RT-Na/S) batteries have recently regained a great deal of attention due to their high theoretical energy density and low cost, which make them promising candidates for application in large-scale energy storage, especially in stationary energy storage, such as with electrical grids. Research on this system is currently in its infancy, and it is encountering severe challenges in terms of low electroactivity, limited cycle life, and serious self-charging. Moreover, the reaction mechanism of S with Na ions varies with the electrolyte that is applied, and is very complicated and hard to detect due to the multi-step reactions and the formation of various polysulfides. Therefore, understanding the chemistry and optimizing the nanostructure of electrodes for RT-Na/S batteries are critical for their advancement and practical application in the future. In the present review, the electrochemical reactions between Na and S are reviewed, as well as recent progress on the crucial cathode materials. Furthermore, attention also is paid to electrolytes, separators, and cell configuration. Additionally, current challenges and future perspectives for the RT-Na/S batteries are discussed, and potential research directions toward improving RT-Na/S cells are proposed at the end

    Promoted Photocharge Separation in 2D Lateral Epitaxial Heterostructure for Visible‐Light‐Driven CO2 Photoreduction

    Get PDF
    Photocarrier recombination remains a big barrier for the improvement of solar energy conversion efficiency. For 2D materials, construction of heterostructures represents an efficient strategy to promote photoexcited carrier separation via an internal electric field at the heterointerface. However, due to the difficulty in seeking two components with suitable crystal lattice mismatch, most of the current 2D heterostructures are vertical heterostructures and the exploration of 2D lateral heterostructures is scarce and limited. Here, lateral epitaxial heterostructures of BiOCl @ Bi2O3 at the atomic level are fabricated via sonicating‐assisted etching of Cl in BiOCl. This unique lateral heterostructure expedites photoexcited charge separation and transportation through the internal electric field induced by chemical bonding at the lateral interface. As a result, the lateral BiOCl @ Bi2O3 heterostructure demonstrates superior CO2 photoreduction properties with a CO yield rate of about 30 µmol g−1 h−1 under visible light illumination. The strategy to fabricate lateral epitaxial heterostructures in this work is expected to provide inspiration for preparing other 2D lateral heterostructures used in optoelectronic devices, energy conversion, and storage fields

    Nickel sulfide nanocrystals on nitrogen-doped porous carbon nanotubes with high-efficiency electrocatalysis for room-temperature sodium-sulfur batteries

    Get PDF
    Polysulfide dissolution and slow electrochemical kinetics of conversion reactions lead to low utilization of sulfur cathodes that inhibits further development of room-temperature sodium-sulfur batteries. Here we report a multifunctional sulfur host, NiS2 nanocrystals implanted in nitrogen-doped porous carbon nanotubes, which is rationally designed to achieve high polysulfide immobilization and conversion. Attributable to the synergetic effect of physical confinement and chemical bonding, the high electronic conductivity of the matrix, closed porous structure, and polarized additives of the multifunctional sulfur host effectively immobilize polysulfides. Significantly, the electrocatalytic behaviors of the Lewis base matrix and the NiS2 component are clearly evidenced by operando synchrotron X-ray diffraction and density functional theory with strong adsorption of polysulfides and high conversion of soluble polysulfides into insoluble Na2S2/Na2S. Thus, the as-obtained sulfur cathodes exhibit excellent performance in room-temperature Na/S batteries

    Observation of Non-Hermitian Skin Effect in Thermal Diffusion

    Full text link
    The paradigm shift of the Hermitian systems into the non-Hermitian regime profoundly modifies the inherent topological property, leading to various unprecedented effects such as the non-Hermitian skin effect (NHSE). In the past decade, the NHSE effect has been demonstrated in quantum, optical and acoustic systems. Besides in those non-Hermitian wave systems, the NHSE in diffusive systems has not yet been explicitly demonstrated, despite recent abundant advances in the study of topological thermal diffusion. Here we first design a thermal diffusion lattice based on a modified Su-Schrieffer-Heeger model which enables the observation of diffusive NHSE. In the proposed model, the periodic heat exchange rate among adjacent unit cells and the asymmetric temperature field coupling inside unit cells can be judiciously realized by appropriate configurations of structural parameters of unit cells. The transient concentration feature of temperature field on the boundary regardless of initial excitation conditions can be clearly observed, indicating the occurrence of transient thermal skin effect. Nonetheless, we experimentally demonstrated the NHSE and verified the remarkable robustness against various defects. Our work provides a platform for exploration of non-Hermitian physics in the diffusive systems, which has important applications in efficient heat collection, highly sensitive thermal sensing and others.Comment: 23 pages, 5 figure

    A New Transcatheter Aortic Valve Replacement System for Predominant Aortic Regurgitation Implantation of the J-Valve and Early Outcome

    Get PDF
    AbstractObjectivesThis study introduces a newly designed transcatheter aortic valve system, the J-Valve system, and evaluates its application in patients with predominant aortic regurgitation without significant valve calcification. We also report the early results of one of the first series of transapical implantations of this device and aim to offer guidance on the technical aspects of the procedure.BackgroundTranscatheter aortic valve replacement (TAVR) has been widely used in high-risk patients for surgical aortic valve replacement. However, the majority of the TAVR devices were designed for aortic valve stenosis with significant valve calcification.MethodsSix patients with native aortic regurgitation without significant valve calcification (age, 61 to 83 years; mean age, 75.50 ± 8.14 years) underwent transapical implantation of the J-Valve prosthesis (JieCheng Medical Technology Co., Ltd., Suzhou, China), a self-expandable porcine valve, in the aortic position at our institution. All patients were considered to be prohibitive or high risk for surgical valve replacement (logistic EuroSCORE [European System for Cardiac Operative Risk Evaluation], 22.15% to 44.44%; mean, 29.32 ± 7.70%) after evaluation by an interdisciplinary heart team. Procedural and clinical outcomes were analyzed.ResultsImplantations were successful in all patients. During the follow-up period (from 31 days to 186 days, mean follow-up was 110.00 ± 77.944 days), only 1 patient had trivial prosthetic valve regurgitation, and none of these patients had paravalvular leak of more than mild grade. There were no major post-operative complications or mortality during the follow-up.ConclusionsOur study demonstrated the feasibility of transapical implantation of the J-Valve system in high-risk patients with predominant aortic regurgitation
    corecore