9,698 research outputs found

    The influences of the galactic cosmic ray on the atmospheric ozone

    Get PDF
    The relationship between the yearly variations of cosmic ray intensity and ozone in the atmosphere, and the ozone disturbance initiated by the Forbush decrease of 1965-1976 is analyzed. The data on cosmic ray intensity were selected from the records of the super neutron monitor at Deep River station and the ionization chamber at Beijing station. Ozone data were taken from Resolute (Canada), Bismark (N. Dakota, USA), Kagoshima (Japan), and Kodaikanal (India). The statistical results show that ozone is prominently modulated and disturbed by the 11 year variation and the Forbush decrease in the galactic cosmic ray

    Detectable MeV neutrinos from black hole neutrino-dominated accretion flows

    Full text link
    Neutrino-dominated accretion flows (NDAFs) around rotating stellar-mass black holes (BHs) have been theorized as the central engine of relativistic jets launched in massive star core collapse events or compact star mergers. In this work, we calculate the electron neutrino/anti-neutrino spectra of NDAFs by fully taking into account the general relativistic effects, and investigate the effects of viewing angle, BH spin, and mass accretion rate on the results. We show that even though a typical NDAF has a neutrino luminosity lower than that of a typical supernova (SN), it can reach 1050−1051 erg s−110^{50}-10^{51}~{\rm erg~s^{-1}} peaking at ∼10\sim 10 MeV, making them potentially detectable with the upcoming sensitive MeV neutrino detectors if they are close enough to Earth. Based on the observed GRB event rate in the local universe and requiring that at least 3 neutrinos are detected to claim a detection, we estimate a detection rate up to ∼\sim (0.10-0.25) per century for GRB-related NDAFs by the Hyper-Kamiokande (Hyper-K) detector if one neglects neutrino oscillation. If one assumes that all Type Ib/c SNe have an engine-driven NDAF, the Hyper-K detection rate would be ∼\sim (1-3) per century. By considering neutrino oscillations, the detection rate may decrease by a factor of 2-3. Detecting one such event would establish the observational evidence of NDAFs in the universe.Comment: 7 pages, 2 figures, 2 tables, accepted for publication in PR
    • …
    corecore