6,068 research outputs found

    Fast geometric gate operation of superconducting charge qubits in circuit QED

    Full text link
    A scheme for coupling superconducting charge qubits via a one-dimensional superconducting transmission line resonator is proposed. The qubits are working at their optimal points, where they are immune to the charge noise and possess long decoherence time. Analysis on the dynamical time evolution of the interaction is presented, which is shown to be insensitive to the initial state of the resonator field. This scheme enables fast gate operation and is readily scalable to multiqubit scenario

    Quantum simulation of exotic PT-invariant topological nodal loop bands with ultracold atoms in an optical lattice

    Get PDF
    Since the well-known PT symmetry has its fundamental significance and implication in physics, where PT denotes the combined operation of space-inversion P and time-reversal T, it is extremely important and intriguing to completely classify exotic PT-invariant topological metals and to physically realize them. Here we, for the first time, establish a rigorous classification of topological metals that are protected by the PT symmetry using KO-theory. As a physically realistic example, a PT-invariant nodal loop (NL) model in a 3D Brillouin zone is constructed, whose topological stability is revealed through its PT-symmetry-protected nontrivial Z2 topological charge. Based on these exact results, we propose an experimental scheme to realize and to detect tunable PT-invariant topological NL states with ultracold atoms in an optical lattice, in which atoms with two hyperfine spin states are loaded in a spin-dependent 3D OL and two pairs of Raman lasers are used to create out-of-plane spin-flip hopping with site-dependent phase. Such a realistic cold-atom setup can yield topological NL states, having a tunable ring-shaped band-touching line with the two-fold degeneracy in the bulk spectrum and non-trivial surface states. The states are actually protected by the combined PT symmetry even in the absence of both P and T symmetries, and are characterized by a Z2-type invariant (a quantized Berry phase). Remarkably, we demonstrate with numerical simulations that (i) the characteristic NL can be detected by measuring the atomic transfer fractions in a Bloch-Zener oscillation; (ii) the topological invariant may be measured based on the time-of-flight imaging; and (iii) the surface states may be probed through Bragg spectroscopy. The present proposal for realizing topological NL states in cold atom systems may provide a unique experimental platform for exploring exotic PT-invariant topological physics.Comment: 11 pages, 6 figures; accepted for publication in Phys. Rev.

    High fidelity quantum state transfer in electromechanical systems with intermediate coupling

    Get PDF
    published_or_final_versio

    GAN-Based Differential Private Image Privacy Protection Framework for the Internet of Multimedia Things.

    Full text link
    With the development of the Internet of Multimedia Things (IoMT), an increasing amount of image data is collected by various multimedia devices, such as smartphones, cameras, and drones. This massive number of images are widely used in each field of IoMT, which presents substantial challenges for privacy preservation. In this paper, we propose a new image privacy protection framework in an effort to protect the sensitive personal information contained in images collected by IoMT devices. We aim to use deep neural network techniques to identify the privacy-sensitive content in images, and then protect it with the synthetic content generated by generative adversarial networks (GANs) with differential privacy (DP). Our experiment results show that the proposed framework can effectively protect users' privacy while maintaining image utility

    Genome-scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pollen development from the microspore involves a series of coordinated cellular events, and the resulting mature pollen has a specialized function to quickly germinate, produce a polar-growth pollen tube derived from the vegetative cell, and deliver two sperm cells into the embryo sac for double fertilization. The gene expression profiles of developing and germinated pollen have been characterised by use of the eudicot model plant <it>Arabidopsis</it>. Rice, one of the most important cereal crops, has been used as an excellent monocot model. A comprehensive analysis of transcriptome profiles of developing and germinated pollen in rice is important to understand the conserved and diverse mechanism underlying pollen development and germination in eudicots and monocots.</p> <p>Results</p> <p>We used Affymetrix GeneChip<sup>® </sup>Rice Genome Array to comprehensively analyzed the dynamic changes in the transcriptomes of rice pollen at five sequential developmental stages from microspores to germinated pollen. Among the 51,279 transcripts on the array, we found 25,062 pollen-preferential transcripts, among which 2,203 were development stage-enriched. The diversity of transcripts decreased greatly from microspores to mature and germinated pollen, whereas the number of stage-enriched transcripts displayed a "U-type" change, with the lowest at the bicellular pollen stage; and a transition of overrepresented stage-enriched transcript groups associated with different functional categories, which indicates a shift in gene expression program at the bicellular pollen stage. About 54% of the now-annotated rice F-box protein genes were expressed preferentially in pollen. The transcriptome profile of germinated pollen was significantly and positively correlated with that of mature pollen. Analysis of expression profiles and coexpressed features of the pollen-preferential transcripts related to cell cycle, transcription, the ubiquitin/26S proteasome system, phytohormone signalling, the kinase system and defense/stress response revealed five expression patterns, which are compatible with changes in major cellular events during pollen development and germination. A comparison of pollen transcriptomes between rice and <it>Arabidopsis </it>revealed that 56.6% of the rice pollen preferential genes had homologs in <it>Arabidopsis </it>genome, but 63.4% of these homologs were expressed, with a small proportion being expressed preferentially, in <it>Arabidopsis </it>pollen. Rice and <it>Arabidopsis </it>pollen had non-conservative transcription factors each.</p> <p>Conclusions</p> <p>Our results demonstrated that rice pollen expressed a set of reduced but specific transcripts in comparison with vegetative tissues, and the number of stage-enriched transcripts displayed a "U-type" change during pollen development, with the lowest at the bicellular pollen stage. These features are conserved in rice and <it>Arabidopsis</it>. The shift in gene expression program at the bicellular pollen stage may be important to the transition from earlier cell division to later pollen maturity. Pollen at maturity pre-synthesized transcripts needed for germination and early pollen tube growth. The transcription regulation associated with pollen development would have divergence between the two species. Our results also provide novel insights into the molecular program and key components of the regulatory network regulating pollen development and germination.</p

    Continuum of Bound States in a Non-Hermitian Model

    Full text link
    In a Hermitian system, bound states must have quantized energies, whereas extended states can form a continuum. We demonstrate how this principle fails for non-Hermitian systems, by analyzing non-Hermitian continuous Hamiltonians with an imaginary momentum and Landau-type vector potential. The eigenstates, which we call ``continuum Landau modes'' (CLMs), have gaussian spatial envelopes and form a continuum filling the complex energy plane. We present experimentally-realizable 1D and 2D lattice models that can be used to study CLMs; the lattice eigenstates are localized and have other features that are the same as in the continuous model. One of these lattices can serve as a rainbow trap, whereby the response to an excitation is concentrated at a position proportional to the frequency. Another lattice can act a wave funnel, concentrating an input excitation onto a boundary over a wide frequency bandwidth. Unlike recent funneling schemes based on the non-Hermitian skin effect, this requires only a simple lattice design without nonreciprocal couplings

    Anomalous Floquet non-Hermitian skin effect in a ring resonator lattice

    Full text link
    We present a one-dimensional coupled ring resonator lattice exhibiting a variant of the non- Hermitian skin effect (NHSE) that we call the anomalous Floquet NHSE. Unlike existing approaches to achieving the NHSE by engineering gain and loss on different ring segments, our design uses fixed on-site gain or loss in each ring. The anomalous Floquet NHSE is marked by the existence of skin modes at every value of the Floquet quasienergy, allowing for broadband asymmetric transmission. Varying the gain/loss induces a non-Hermitian topological phase transition, reversing the localization direction of the skin modes. An experimental implementation in an acoustic lattice yields good agreement with theoretical predictions, with a very broad relative bandwidth of around 40%.Comment: 7 pages, 3 figure
    • …
    corecore