8,557 research outputs found

    Complementary relations of entanglement, coherence, steering and Bell nonlocality inequality violation in three-qubit states

    Full text link
    We put forward complementary relations of entanglement, coherence, steering inequality violation, and Bell nonlocality for arbitrary three-qubit states. We show that two families of genuinely entangled three-qubit pure states with single parameter exist, and they exhibit maximum coherence and steering inequality violation for a fixed amount of negativity, respectively. It is found that the negativity is exactly equal to the geometric mean of bipartite concurrences for the three-qubit pure states, although the negativity is always less than or equal to the latter for three-qubit mixed states. Moreover, the complementary relation between negativity and first-order coherence for tripartite entanglement states are established. Furthermore, we investigate the close relation between the negativity and the maximum steering inequality violation. In addition, the complementary relation between negativity and the maximum Bell-inequality violation for arbitrary three-qubit states is obtained. The results provide reliable evidence of fundamental connections among entanglement, coherence, steering inequality violation, and Bell nonlocality.Comment: 11 pages, 5 figure

    Resistance Assessment for Oxathiapiprolin in Phytophthora capsici and the Detection of a Point Mutation (G769W) in PcORP1 that Confers Resistance

    Get PDF
    The potential for oxathiapiprolin resistance in Phytophthora capsici was evaluated. The baseline sensitivities of 175 isolates to oxathiapiprolin were initially determinated and found to conform to a unimodal curve with a mean EC50 value of 5.61×10-4 μg/ml. Twelve stable oxathiapiprolin-resistant mutants were generated by fungicide adaption in two sensitive isolates, LP3 and HNJZ10. The fitness of the LP3-mutants was found to be similar to or better than that of the parental isolate LP3, while the HNJZ10-mutants were found to have lost the capacity to produce zoospores. Taken together these results suggest that the risk of P. capsici developing resistance to oxathiapiprolin is moderate. Comparison of the PcORP1 genes in the LP3-mutants and wild-type parental isolate, which encode the target protein of oxathiapiprolin, revealed that a heterozygous mutation caused the amino acid substitution G769W. Transformation and expression of the mutated PcORP1-769W allele in the sensitive wild-type isolate BYA5 confirmed that the mutation in PcORP1 was responsible for the observed oxathiapiprolin resistance. Finally diagnostic tests including As-PCR and CAPs were developed to detect the oxathiapiprolin resistance resulting from the G769W point mutation in field populations of P. capsici

    Design of the Reverse Logistics System for Medical Waste Recycling Part I: System Architecture, Classification & Monitoring Scheme, and Site Selection Algorithm

    Full text link
    With social progress and the development of modern medical technology, the amount of medical waste generated is increasing dramatically. The problem of medical waste recycling and treatment has gradually drawn concerns from the whole society. The sudden outbreak of the COVID-19 epidemic further brought new challenges. To tackle the challenges, this study proposes a reverse logistics system architecture with three modules, i.e., medical waste classification & monitoring module, temporary storage & disposal site selection module, as well as route optimization module. This overall solution design won the Grand Prize of the "YUNFENG CUP" China National Contest on Green Supply and Reverse Logistics Design ranking 1st. This paper focuses on the description of architectural design and the first two modules, especially the module on site selection. Specifically, regarding the medical waste classification & monitoring module, three main entities, i.e., relevant government departments, hospitals, and logistics companies, are identified, which are involved in the five management functions of this module. Detailed data flow diagrams are provided to illustrate the information flow and the responsibilities of each entity. Regarding the site selection module, a multi-objective optimization model is developed, and considering different types of waste collection sites (i.e., prioritized large collection sites and common collection sites), a hierarchical solution method is developed employing linear programming and K-means clustering algorithms sequentially. The proposed site selection method is verified with a case study and compared with the baseline, it can immensely reduce the daily operational costs and working time. Limited by length, detailed descriptions of the whole system and the remaining route optimization module can be found at https://shorturl.at/cdY59.Comment: 8 pages, 6 figures, submitted to and under review by the IEEE Intelligent Vehicles Symposium (IV 2023

    Diagnostic value of two dimensional shear wave elastography combined with texture analysis in early liver fibrosis.

    Get PDF
    BACKGROUND: Staging diagnosis of liver fibrosis is a prerequisite for timely diagnosis and therapy in patients with chronic hepatitis B. In recent years, ultrasound elastography has become an important method for clinical noninvasive assessment of liver fibrosis stage, but its diagnostic value for early liver fibrosis still needs to be further improved. In this study, the texture analysis was carried out on the basis of two dimensional shear wave elastography (2D-SWE), and the feasibility of 2D-SWE plus texture analysis in the diagnosis of early liver fibrosis was discussed. AIM: To assess the diagnostic value of 2D-SWE combined with textural analysis in liver fibrosis staging. METHODS: This study recruited 46 patients with chronic hepatitis B. Patients underwent 2D-SWE and texture analysis; Young\u27s modulus values and textural patterns were obtained, respectively. Textural pattern was analyzed with regard to contrast, correlation, angular second moment (ASM), and homogeneity. Pathological results of biopsy specimens were the gold standard; comparison and assessment of the diagnosis efficiency were conducted for 2D-SWE, texture analysis and their combination. RESULTS: 2D-SWE displayed diagnosis efficiency in early fibrosis, significant fibrosis, severe fibrosis, and early cirrhosis (AUC \u3e 0.7, P \u3c 0.05) with respective AUC values of 0.823 (0.678-0.921), 0.808 (0.662-0.911), 0.920 (0.798-0.980), and 0.855 (0.716-0.943). Contrast and homogeneity displayed independent diagnosis efficiency in liver fibrosis stage (AUC \u3e 0.7, P \u3c 0.05), whereas correlation and ASM showed limited values. AUC of contrast and homogeneity were respectively 0.906 (0.779-0.973), 0.835 (0.693-0.930), 0.807 (0.660-0.910) and 0.925 (0.805-0.983), 0.789 (0.639-0.897), 0.736 (0.582-0.858), 0.705 (0.549-0.883) and 0.798 (0.650-0.904) in four liver fibrosis stages, which exhibited equivalence to 2D-SWE in diagnostic efficiency (P \u3e 0.05). Combined diagnosis (PRE) displayed diagnostic efficiency (AUC \u3e 0.7, P \u3c 0.01) for all fibrosis stages with respective AUC of 0.952 (0.841-0.994), 0.896 (0.766-0.967), 0.978 (0.881-0.999), 0.947 (0.835-0.992). The combined diagnosis showed higher diagnosis efficiency over 2D-SWE in early liver fibrosis (P \u3c 0.05), whereas no significant differences were observed in other comparisons (P \u3e 0.05). CONCLUSION: Texture analysis was capable of diagnosing liver fibrosis stage, combined diagnosis had obvious advantages in early liver fibrosis, liver fibrosis stage might be related to the hepatic tissue hardness distribution

    Design of the Reverse Logistics System for Medical Waste Recycling Part II: Route Optimization with Case Study under COVID-19 Pandemic

    Full text link
    Medical waste recycling and treatment has gradually drawn concerns from the whole society, as the amount of medical waste generated is increasing dramatically, especially during the pandemic of COVID-19. To tackle the emerging challenges, this study designs a reverse logistics system architecture with three modules, i.e., medical waste classification & monitoring module, temporary storage & disposal site (disposal site for short) selection module, as well as route optimization module. This overall solution design won the Grand Prize of the "YUNFENG CUP" China National Contest on Green Supply and Reverse Logistics Design ranking 1st. This paper focuses on the design of the route optimization module. In this module, a route optimization problem is designed considering transportation costs and multiple risk costs (e.g., environment risk, population risk, property risk, and other accident-related risks). The Analytic Hierarchy Process is employed to determine the weights for each risk element, and a customized genetic algorithm is developed to solve the route optimization problem. A case study under the COVID-19 pandemic is further provided to verify the proposed model. Limited by length, detailed descriptions of the whole system and the other modules can be found at https://shorturl.at/cdY59.Comment: 6 pages, 4 figures, under review by the 26th IEEE International Conference on Intelligent Transportation Systems (ITSC 2023
    • …
    corecore