8,188 research outputs found

    Deep Learning for Single Image Super-Resolution: A Brief Review

    Get PDF
    Single image super-resolution (SISR) is a notoriously challenging ill-posed problem, which aims to obtain a high-resolution (HR) output from one of its low-resolution (LR) versions. To solve the SISR problem, recently powerful deep learning algorithms have been employed and achieved the state-of-the-art performance. In this survey, we review representative deep learning-based SISR methods, and group them into two categories according to their major contributions to two essential aspects of SISR: the exploration of efficient neural network architectures for SISR, and the development of effective optimization objectives for deep SISR learning. For each category, a baseline is firstly established and several critical limitations of the baseline are summarized. Then representative works on overcoming these limitations are presented based on their original contents as well as our critical understandings and analyses, and relevant comparisons are conducted from a variety of perspectives. Finally we conclude this review with some vital current challenges and future trends in SISR leveraging deep learning algorithms.Comment: Accepted by IEEE Transactions on Multimedia (TMM

    Recovering Container Class Types in C++ Binaries

    Full text link
    We present TIARA, a novel approach to recovering container classes in c++ binaries. Given a variable address in a c++ binary, TIARA first applies a new type-relevant slicing algorithm incorporated with a decay function, TSLICE, to obtain an inter-procedural forward slice of instructions expressed as a CFG to summarize how the variable is used in the binary (as our primary contribution). TIARA then makes use of a GCN (Graph Convolutional Network) to learn and predict the container type for the variable (as our secondary contribution). According to our evaluation, TIARA can advance the state of the art in inferring commonly used container types in a set of eight large real-world COTS c++ binaries efficiently (in terms of the overall analysis time) and effectively (in terms of precision, recall and F1 score)

    Implementing topological quantum manipulation with superconducting circuits

    Full text link
    A two-component fermion model with conventional two-body interactions was recently shown to have anyonic excitations. We here propose a scheme to physically implement this model by transforming each chain of two two-component fermions to the two capacitively coupled chains of superconducting devices. In particular, we elaborate how to achieve the wanted operations to create and manipulate the topological quantum states, providing an experimentally feasible scenario to access the topological memory and to build the anyonic interferometry.Comment: 4 pages with 3 figures; V2: published version with minor updation
    • …
    corecore