7 research outputs found

    Surface charge accumulation characteristics on DC GIL three-post insulators considering the influence of temperature gradient

    Get PDF
    Surface charge accumulation is considered to be a critical factor in flashover failure of three-post insulators. However, surface charge accumulation characteristics on three-post insulators with complex structures and uneven electric fields are still unclear. Furthermore, the temperature gradient field makes charge accumulation more complicated. In this presentation, surface charge profiles of DC three-post insulators under electro-thermal coupling stress are studied by establishing a multi-degree-of-freedom movement measurement system. The abdominal area of the three-post insulator accumulaftes charges of identical polarity as the DC voltage, while the leg area accumulates heteropolar charges. Charge density from the bottom of the leg to the center of the abdomen presents a trimodal distribution pattern, including two homopolar charge peaks and one heteropolar charge peak. Asymmetrical surface conductance distribution arising from the temperature gradient leads to a significant increase in amplitude and distribution range of the homopolar charge peak at the legs of insulator. Increase of the temperature gradient will further magnify the homopolar charge peak at the legs. When DC voltage is 100 kV and conductive pole temperature is 70°C, surface charge density of the three-post insulator can reach 100 μC/m 2 . Therefore, surface conductance regulation of the leg region is the key to charge regulation and insulation optimization design of DC three-post insulators

    Surface flashover induced by metal contaminants adhered to tri-post epoxy insulators under superimposed direct and lightning impulse voltages

    Get PDF
    Metal contaminants can distort the surface electric field of the tri-post epoxy insulator and cause serious surface charge accumulation, significantly reducing the insulation performance of the insulator under the superimposed DC and lightning impulse voltage. In this paper, an experimental platform for charge accumulation and surface flashover of tri-post epoxy insulators under the superimposed DC and lightning impulse voltage was built, by surface point measurement and charge inversion calculation, the surface charge distribution characteristics of tri-post insulators with attached particles was experimentally explored and the influence law of attached metal particles on the charge accumulation was discussed. The results show that metal particles can cause a surge in the surface charge density of the tri-post epoxy insulator, forming bipolar charge spots whose polarity is opposite to that of the adjacent electrodes. The adsorbed metal dust can cause the polarity reversal of adjacent surface charges, forming a large-area unipolar charge spot. Moreover, the flashover voltage of a tri-post insulator under DC superimposed lightning impulse voltage with a clean surface and attached metal particle was measured, and the synergistic induction mechanism of charge spot accumulation and metal particle discharge on the flashover along the face of the tri-post insulator is thereby revealed. Compared with the clean insulators, the surface flashover voltages of tri-post epoxy insulators with metal contaminants adhered decrease under the superimposed voltages of different polarities, but the decline amplitude is greater under the heteropolar composite voltage. When adhered to the middle of the insulator leg, the distribution range of bipolar charge spots is the widest, and the surface flashover voltage decreases sharply, which can drop by 32% compared with the absence of particles. In addition, when the metal dust adsorbed by the tri-post epoxy insulator has a wide distribution range, the impact of metal dust on the flashover voltage is greater than that of the attached metal particles, and its hazard cannot be ignored. The research results can provide a reference for the insulation test method and optimal design of the DC tri-post epoxy insulato

    Thermal Decomposition Mechanism of GIS Basin Insulator and Kinetic Parameters-Based Lifetime Prediction Methodology

    No full text
    To reliably detect the latent defects and accurately evaluate the remaining life of gas insulated switchgear (GIS) basin insulators, more effective detection and characterization methods need to be explored. The study of pyrolysis kinetic parameters based on the intrinsic characteristics of materials provides a new way to solve this problem. First, an integral expression model of the reaction mechanism function with four parameters is proposed in this paper, which can represent various existing reaction mechanism functions with better universality and more application fields. Then, on the basis of the temperature transformation equation, an improved method for calculating the activation energy is presented, which shows higher computational accuracy than the existing methods. Further, based on a non-isothermal kinetic equation, the structure of the experimental function is given. It is a method for solving the pyrolysis reaction mechanism function of insulating materials, which can also be used to calculate the pre-exponential factor simultaneously. The thermogravimetric analysis experiment is carried out on a certain basin insulator sample at different heating rates. The pyrolysis kinetic state parameters, including the activation energy, reaction mechanism function and pre-exponential factor of the basin insulator, are calculated. Finally, the life prediction method of basin insulators is established, and the key factors affecting the life of insulators are discussed

    Capture mechanism and optimal design of micro-particle traps in HVAC/HVDC gas insulated equipment

    No full text
    A particle motion excitation and observation platform was established to physically simulate the actual online operating conditions of HVAC/HVDC GIS/GIL as well as study the capture mechanism of particle traps. Experimental results illustrated that, the collision motion style was a principal factor to affect the particle capturing capability, and the capture behavior of AC and DC particle traps could be classified into three separate modes, depending on variation of the collision process which could be characterized by random probability and the lognormal distribution rebound angle. A particle trajectory simulation model incorporating motion randomness was thereby presented as to realize quantitative analysis and further optimize the trap parameters. A hazard index and minimum collision times were defined and calculated to quantitatively evaluate the particle collision effect on trapping capability. Further, a novel trap design topology was proposed to enhance the anti-motion efficiency of the particle traps. Targeted at high objective capture probability, the particle trap parameters were optimized to reduce the hazard index and improve the minimum collision times by the Monte Carlo scheme. Verification of the novel article trap was implemented on a test rig, which gave an increased capture probability by 30% compared with the traditional trap design

    Spatial-Temporal Kinetic Behaviors of Micron-Nano Dust Adsorption along Epoxy Resin Insulator Surfaces and the Physical Mechanism of Induced Surface Flashover

    No full text
    The advanced Gas Insulated Switchgear/Gas Insulated Lines (GIS/GIL) transmission equipment serves as an essential physical infrastructure for establishing a new energy power system. An analysis spanning nearly a decade on faults arising from extra/ultra-high voltage discharges reveals that over 60% of such faults are attributed to the discharge of metal particles and dust. While existing technical means, such as ultra-high frequency and ultrasonic sensing, exhibit effectiveness in online monitoring of particles larger than sub-millimeter dimensions, the inherent randomness and elusive nature of micron-nano dust pose challenges for effective characterization through current technology. This elusive micron-nano dust, likely concealed as a latent threat, necessitates special attention due to its potential as a “safety killer”. To address the challenges associated with detecting micron-nano dust and comprehending its intricate mechanisms, this paper introduces a micron-nano dust adsorption experimental platform tailored for observation and practical application in GIS/GIL operations. The findings highlight that micron-nano dust’s adsorption state in the electric field predominantly involves agglomerative adsorption along the insulator surface and diffusive adsorption along the direction of the ground electrode. The pivotal factors influencing dust movement include the micron-nano dust’s initial position, mass, material composition, and applied voltage. Further elucidation emphasizes the potential of micron-nano dust as a concealed safety hazard. The study reveals specific physical phenomena during the adsorption process. Agglomerative adsorption results in micron-nano dust speckles forming on the epoxy resin insulator’s surface. With increasing voltage, these speckles undergo an “explosion”, forming an annular dust halo with deepening contours. This phenomenon, distinct from the initial adsorption, is considered a contributing factor to flashovers along the insulator’s surface. The physical mechanism behind flashovers triggered by micron-nano dust is uncovered, highlighting the formation of a localized short circuit area and intense electric field distortion constituted by dust speckles. These findings establish a theoretical foundation and technical support for enhancing the safe operational performance of AC and DC transmission pipelines’ insulation

    Study on High Frequency Surface Discharge Characteristics of SiO<sub>2</sub> Modified Polyimide Film

    No full text
    Polyimide (PI) can be used as a cladding insulation for high frequency power transformers, and along-side discharge can lead to insulation failure, so material modification techniques are used. In this paper, different doped nano-SiO2 are introduced into polyimide for nanocomposite modification. The results of testing the life time of high-frequency electrical stress along-side discharge show that the 10% SiO2 doping has the longest life time. The results show that: for composites prone to corona, their flashover causes more damage, and both positive half-cycle and polarity reversal discharges are more violent; compared to pure PI, the positive half-cycle and overall discharge amplitude and number of modified films are smaller, but the negative half-cycle is larger; at creeping development stages, the number of discharges is smaller, and the discharge amplitude of both films fluctuates in the mid-term, with the modified films having fewer discharges and the PI films discharging more violently in the later stages. The increase in the intensity of the discharge was greater in the later stages, and the amplitude and number of discharges were much higher than those of the modified film, which led to a rapid breakdown of the pure polyimide film. Further research found that resistivity plays an important role in the structural properties of the material in the middle and late stages, light energy absorption in the modified film plays an important role, the distribution of traps also affects the discharge process, and in the late stages of the discharge, the heating of the material itself has a greater impact on the breakdown, so the pure polyimide film as a whole discharges more severely and has the shortest life

    High-Frequency Surface Insulation Strength with Nanoarchitectonics of Disiloxane Modified Polyimide Films

    No full text
    High-frequency power transformers are conducive to the reliable grid connection of distributed energy sources. Polyimide is often used for the coating insulation of high-frequency power transformers. However, creeping discharge will cause insulation failure, therefore, it is necessary to use disiloxane for the purpose of modifying the molecular structure of polyimide. This paper not only introduces 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane (GAPD) with a molar content of 1%, 2%, and 5% to polyimide, but also tests both the physical and chemical properties of the modified film and the high frequency creeping dielectric strength. The results show that after adding GAPD, the overall functional groups of the material do not change, at the same time the transfer complexation of intermolecular charge and the absorption of ultraviolet light increase. There is no phase separation of the material and the structure is more regular and ordered, moreover the crystallinity increases. The overall dielectric constant and the dielectric loss tangent value show different trends, which means that the former value increases, while the latter value decreases. In addition, the resistivity of the surface and the volume increase, which is the same as the glass transition temperature. The mechanical properties are excellent, and the strength of bulk breakdown is mounting. The insulation strength of the high frequency creeping surface has been improved, which will increase with larger contents of GAPD. Among them, the relative change of the creeping flashover voltage is not obvious, and the creeping discharge life of G5 is 4.77 times that of G0. Further analysis shows that the silicon-oxygen chain links of the modified film forms a uniformly dispersed Si-O-Si network in the matrix through chemical bonds and charge transfer complexation. Once the outer matrix is destroyed, it will produce dispersed flocculent inorganic particles which have the role of protecting the inner material and improving the performance of the material. Combined with the ultraviolet light energy absorption, the increase of deep traps, the reduction of dielectric loss, and the improvement of thermodynamic performance, can better improve the high-frequency creeping insulation strength of polyimide film and its potential application value
    corecore