44 research outputs found

    Increment entropy as a measure of complexity for time series

    Full text link
    Entropy has been a common index to quantify the complexity of time series in a variety of fields. Here, we introduce increment entropy to measure the complexity of time series in which each increment is mapped into a word of two letters, one letter corresponding to direction and the other corresponding to magnitude. The Shannon entropy of the words is termed as increment entropy (IncrEn). Simulations on synthetic data and tests on epileptic EEG signals have demonstrated its ability of detecting the abrupt change, regardless of energetic (e.g. spikes or bursts) or structural changes. The computation of IncrEn does not make any assumption on time series and it can be applicable to arbitrary real-world data.Comment: 12pages,7figure,2 table

    Sparse Semantic Map-Based Monocular Localization in Traffic Scenes Using Learned 2D-3D Point-Line Correspondences

    Full text link
    Vision-based localization in a prior map is of crucial importance for autonomous vehicles. Given a query image, the goal is to estimate the camera pose corresponding to the prior map, and the key is the registration problem of camera images within the map. While autonomous vehicles drive on the road under occlusion (e.g., car, bus, truck) and changing environment appearance (e.g., illumination changes, seasonal variation), existing approaches rely heavily on dense point descriptors at the feature level to solve the registration problem, entangling features with appearance and occlusion. As a result, they often fail to estimate the correct poses. To address these issues, we propose a sparse semantic map-based monocular localization method, which solves 2D-3D registration via a well-designed deep neural network. Given a sparse semantic map that consists of simplified elements (e.g., pole lines, traffic sign midpoints) with multiple semantic labels, the camera pose is then estimated by learning the corresponding features between the 2D semantic elements from the image and the 3D elements from the sparse semantic map. The proposed sparse semantic map-based localization approach is robust against occlusion and long-term appearance changes in the environments. Extensive experimental results show that the proposed method outperforms the state-of-the-art approaches

    FEND: A Future Enhanced Distribution-Aware Contrastive Learning Framework for Long-tail Trajectory Prediction

    Full text link
    Predicting the future trajectories of the traffic agents is a gordian technique in autonomous driving. However, trajectory prediction suffers from data imbalance in the prevalent datasets, and the tailed data is often more complicated and safety-critical. In this paper, we focus on dealing with the long-tail phenomenon in trajectory prediction. Previous methods dealing with long-tail data did not take into account the variety of motion patterns in the tailed data. In this paper, we put forward a future enhanced contrastive learning framework to recognize tail trajectory patterns and form a feature space with separate pattern clusters. Furthermore, a distribution aware hyper predictor is brought up to better utilize the shaped feature space. Our method is a model-agnostic framework and can be plugged into many well-known baselines. Experimental results show that our framework outperforms the state-of-the-art long-tail prediction method on tailed samples by 9.5% on ADE and 8.5% on FDE, while maintaining or slightly improving the averaged performance. Our method also surpasses many long-tail techniques on trajectory prediction task.Comment: Accepted for publication at the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2023 (CVPR 2023

    Heterogeneous Trajectory Forecasting via Risk and Scene Graph Learning

    Full text link
    Heterogeneous trajectory forecasting is critical for intelligent transportation systems, while it is challenging because of the difficulty for modeling the complex interaction relations among the heterogeneous road agents as well as their agent-environment constraint. In this work, we propose a risk and scene graph learning method for trajectory forecasting of heterogeneous road agents, which consists of a Heterogeneous Risk Graph (HRG) and a Hierarchical Scene Graph (HSG) from the aspects of agent category and their movable semantic regions. HRG groups each kind of road agents and calculates their interaction adjacency matrix based on an effective collision risk metric. HSG of driving scene is modeled by inferring the relationship between road agents and road semantic layout aligned by the road scene grammar. Based on this formulation, we can obtain an effective trajectory forecasting in driving situations, and superior performance to other state-of-the-art approaches is demonstrated by exhaustive experiments on the nuScenes, ApolloScape, and Argoverse datasets.Comment: Submitted to IEEE Transactions on Intelligent Transportation Systems, 202
    corecore