8 research outputs found

    Solid-state composite electrolyte LiI/3-hydroxypropionitrile/SiO2 for dye-sensitized solar cells

    No full text
    A new compound, LiI(3-hydroxypropionitrile)2, is reported here. According to its single-crystal structure (C2/c), this compound has 3-D transporting paths for iodine. Further ab initio calculation shows that the activation energy for diffusion of iodine (0.73 eV) is much lower than that of lithium ion (8.39 eV) within the lattice. Such a mono-ion transport feature is favorable as solid electrolyte to replace conventional volatile organic liquid electrolytes used in dye-sensitized solar cells (DSSC). LiI and 3-hydroxypropionitrile (HPN) can form a series of solid electrolytes. The highest ambient conductivity is 1.4 × 10-3 S/cm achieved for LiI(HPN)4. However, it tends to form large crystallites and leads to poor filling and contact within porous TiO2 electrodes in DSSC. Such a drawback can be greatly improved by introducing micrometer-sized and nanosized SiO2 particles into the solid electrolyte. It is helpful not only in enhancing the conductivity but also in improving the interfacial contact greatly. Consequently, the light-to-electricity conversion efficiency of 5.4% of a DSSC using LiI(HPN)4/15 wt % nano-SiO2 was achieved under AM 1.5 simulated solar light illumination. Due to the low cost, easy fabrication, and relatively high conversion efficiency, the DSSC based on this new solid-state composite electrolyte is promising for practical applications

    Effect of a calcium cathode on water-based nanoparticulate solar cells

    No full text
    Water-based nanoparticulate (NP) and bulk heterojunction (BHJ) organic photovoltaic (OPV) devices based on blends of poly(9,9-dioctylfluorene-co-N,N-bis(4-butylphenyl)-N,Ndiphenyl-1,4-phenylenediamine) (PFB) and poly(9,9-dioctylfluorene-co-benzothiadiazole (F8BT) have been fabricated with aluminium and calcium/aluminium cathodes. The NP devices exhibit power conversion efficiencies (PCEs) that are double that of the corresponding BHJ device. Moreover, the addition of calcium into the cathode structure results in a dramatic increase in open circuit voltage and PCEs approaching 1% for water-based polyfluorene OPV devices

    Synthesis and electronic properties of semiconducting polymers containing benzodithiophene with alkyl phenylethynyl substituents

    No full text
    Semiconducting polymers containing benzodithiophene with decyl phenylethynyl and hexadecyl phenylethynyl substituents have been synthesized by Stille coupling polymerization. The optoelectronic properties of the synthesized polymers have been investigated. The synthesized polymers were tested in bulk heterojunction solar cells

    Vertical stratification and interfacial structure in P3HT: PCBM organic solar cells

    No full text
    Structure and morphology play a critical role in determining the performance of organic photovoltaic devices. In this paper, variation of the postannealing cooling rate is used to create a series of “snapshots” of the vertical and interfacial reorganization processes that occur upon annealing. The data show that slower cooling rates result in significantly enhanced device efficiencies primarily driven by increased short circuit current and fill factor. UV−vis spectroscopy, X-ray diffraction (XRD), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), atomic force microscopy (AFM), and contact angle measurements are used to probe the origin of these improvements. Our results show evidence for a distinct and changing vertical stratification and interfacial structure in the device throughout the annealing process, with both composition and crystallinity varying through the active layer. The implications of these changes are discussed in terms of device properties
    corecore