1,862 research outputs found
On the Coordinate System of Space-Weather HMI Active Region Patches (SHARPs): A Technical Note
We describe the coordinate systems of two streams of HMI active region vector
data. A distinction is made between (a) the 2D grid on which the field vector
is measured (or sampled), and (b) the 3D coordinate established at each grid
point, in which the field vector is presented. The HMI data reduction can
involve coordinate changes on both, with those performed on the former termed
"remapping", the latter "vector transformation". Relevant pipeline procedures
are described. Useful examples are given for data analysis.Comment: Technical note for the HMI vector data pipeline. Containing data
analysis example. Corrected typo in Eq(6
Acquisition of Opposites and Cognitive Explanation
This paper presents an analysis of the acquisition sequence of two pairs of contrasting terms in English. The research is based on questionnaires completed by Chinese learners of English of various levels. The analysis concludes that easily-recognisable, unmarked, high-frequency terms, from which are derived concepts and terms that express an earlier stage of an action, tend to be easier to learn and enjoy a higher retention level during the first phase of acquisition while those terms which do not share these characteristics have a much lower retention level during the same stage. Given these conclusions, this study suggests that learners and teachers of a language should pay more attention to those terms which are in an unfavourable position in the vocabulary acquisition sequence of a language. (English text)
Machine learning model selection with multi-objective Bayesian optimization and reinforcement learning
A machine learning system, including when used in reinforcement learning, is usually fed with only limited data, while aimed at training a model with good predictive performance that can generalize to an underlying data distribution. Within certain hypothesis classes, model selection chooses a model based on selection criteria calculated from available data, which usually serve as estimators of generalization performance of the model.
One major challenge for model selection that has drawn increasing attention is the discrepancy between the data distribution where training data is sampled from and the data distribution at deployment. The model can over-fit in the training distribution, and fail to extrapolate in unseen deployment distributions, which can greatly harm the reliability of a machine learning system. Such a distribution shift challenge can become even more pronounced in high-dimensional data types like gene expression data, functional data and image data, especially in a decentralized learning scenario. Another challenge for model selection is efficient search in the hypothesis space. Since training a machine learning model usually takes a fair amount of resources, searching for an appropriate model with favorable configurations is by inheritance an expensive process, thus calling for efficient optimization algorithms.
To tackle the challenge of distribution shift, novel resampling methods for the evaluation of robustness of neural network was proposed, as well as a domain generalization method using multi-objective bayesian optimization in decentralized learning scenario and variational inference in a domain unsupervised manner.
To tackle the expensive model search problem, combining bayesian optimization and reinforcement learning in an interleaved manner was proposed for efficient search in a hierarchical conditional configuration space. Additionally, the effectiveness of using multi-objective bayesian optimization for model search in a decentralized learning scenarios was proposed and verified.
A model selection perspective to reinforcement learning was proposed with associated contributions in tackling the problem of exploration in high dimensional state action spaces and sparse reward. Connections between statistical inference and control was summarized.
Additionally, contributions in open source software development in related machine learning sub-topics like feature selection and functional data analysis with advanced tuning method and abundant benchmarking were also made
An asymptotically superlinearly convergent semismooth Newton augmented Lagrangian method for Linear Programming
Powerful interior-point methods (IPM) based commercial solvers, such as
Gurobi and Mosek, have been hugely successful in solving large-scale linear
programming (LP) problems. The high efficiency of these solvers depends
critically on the sparsity of the problem data and advanced matrix
factorization techniques. For a large scale LP problem with data matrix
that is dense (possibly structured) or whose corresponding normal matrix
has a dense Cholesky factor (even with re-ordering), these solvers may require
excessive computational cost and/or extremely heavy memory usage in each
interior-point iteration. Unfortunately, the natural remedy, i.e., the use of
iterative methods based IPM solvers, although can avoid the explicit
computation of the coefficient matrix and its factorization, is not practically
viable due to the inherent extreme ill-conditioning of the large scale normal
equation arising in each interior-point iteration. To provide a better
alternative choice for solving large scale LPs with dense data or requiring
expensive factorization of its normal equation, we propose a semismooth Newton
based inexact proximal augmented Lagrangian ({\sc Snipal}) method. Different
from classical IPMs, in each iteration of {\sc Snipal}, iterative methods can
efficiently be used to solve simpler yet better conditioned semismooth Newton
linear systems. Moreover, {\sc Snipal} not only enjoys a fast asymptotic
superlinear convergence but is also proven to enjoy a finite termination
property. Numerical comparisons with Gurobi have demonstrated encouraging
potential of {\sc Snipal} for handling large-scale LP problems where the
constraint matrix has a dense representation or has a dense
factorization even with an appropriate re-ordering.Comment: Due to the limitation "The abstract field cannot be longer than 1,920
characters", the abstract appearing here is slightly shorter than that in the
PDF fil
- …