41 research outputs found

    Automatic Root Cause Analysis via Large Language Models for Cloud Incidents

    Full text link
    Ensuring the reliability and availability of cloud services necessitates efficient root cause analysis (RCA) for cloud incidents. Traditional RCA methods, which rely on manual investigations of data sources such as logs and traces, are often laborious, error-prone, and challenging for on-call engineers. In this paper, we introduce RCACopilot, an innovative on-call system empowered by the large language model for automating RCA of cloud incidents. RCACopilot matches incoming incidents to corresponding incident handlers based on their alert types, aggregates the critical runtime diagnostic information, predicts the incident's root cause category, and provides an explanatory narrative. We evaluate RCACopilot using a real-world dataset consisting of a year's worth of incidents from Microsoft. Our evaluation demonstrates that RCACopilot achieves RCA accuracy up to 0.766. Furthermore, the diagnostic information collection component of RCACopilot has been successfully in use at Microsoft for over four years

    Could the wild population of Large Yellow Croaker Larimichthys crocea (Richardson) in China be restored? A case study in Guanjingyang, Fujian, China

    Get PDF
    Over 90% of the world's fisheries have been fully exploited or over-fished. Included is the large yellow croaker (Larimichthys crocea), an important commercial fish species in China whose population was nearly depleted prior to the 1980s. Although overfishing and natural resources collapse present a daunting issue, some studies indicate that improved management strategies could aid in natural stock restoration to prevent depletion. We developed an integrated assessment method grounded on an ecosystem-based approach and deigned an integrated index with three key aspects of habitat suitability, natural population status and government & social interventions, to evaluate the potential restoration capacity of the species in a designated “national aquatic germplasm resource protected area” in Guanjinyang based on a data set spanning 1987 to 2015. The results show that although restoration efforts on research and rehabilitation have increased greatly since late 1990s, the effectiveness stays moderate and the natural population remains near depletion

    Indoor Positioning Method Based on Wireless Signal

    No full text
    In view of the problems of traditional wireless indoor positioning technologies such as errors and a low positioning accuracy that cannot reach the application level required by hospital indoor positioning, this study proposes a hospital indoor positioning method based on wireless signals. This study firstly analyzes the principles of hospital indoor positioning, verifies the reliability and accuracy of the collected data using Gaussian distribution, P-P plot and Q-Q plot, and finally analyzes the collected data using the least square fitting algorithm to obtain a fitting wave attenuation model, which is then applied to the indoor positioning system. Experiments show that this method can reduce the error of indoor positioning in hospitals, and improve the repeatability and measurement accuracy of indoor positioning in hospitals.</span

    Indoor Positioning Method Based on Wireless Signal

    No full text
    In view of the problems of traditional wireless indoor positioning technologies such as errors and a low positioning accuracy that cannot reach the application level required by hospital indoor positioning, this study proposes a hospital indoor positioning method based on wireless signals. This study firstly analyzes the principles of hospital indoor positioning, verifies the reliability and accuracy of the collected data using Gaussian distribution, P-P plot and Q-Q plot, and finally analyzes the collected data using the least square fitting algorithm to obtain a fitting wave attenuation model, which is then applied to the indoor positioning system. Experiments show that this method can reduce the error of indoor positioning in hospitals, and improve the repeatability and measurement accuracy of indoor positioning in hospitals

    Indoor Positioning Method Based on Wireless Signal

    No full text

    Does the democratization level of village governance affect perceptions of security and integrity of land rights? -An analysis from the perspective of social network abundance

    No full text
    Improving the land property rights system is an effective way to enhance the rural economy and resist the effects of rural decay caused by rapid urbanization. However, in many developing countries, farmers' perception of the security and integrity of their allocated land rights, which is the core of farmers' decision making, deviates from the forms stipulated by formal land property rights systems. China is no exception in this regard. Based on two household surveys conducted in Jiangsu, Jiangxi, and Liaoning Provinces in China, which cover 2014 and 2018 information, this paper uses an ologit model to explore the impact of the democratization level on farmers' perception of land rights security and integrity and identifies the moderating effect of social network abundance. The results show that a higher democratization level of village governance enhances farmers' perception of the effectiveness of land certificates and the integrity of the bundle of rights but exerts an insignificant impact on farmers’ perception of land reallocation. We also find that social network abundance has a moderating effect. Social network abundance weakens the effect of democratization level on the perception of certificate effectiveness but enhance its effect on the perception of rights integrity. Furthermore, our findings provide a reference for reforming rural land property rights systems and rural governance systems during the process of developing rural revitalization strategies

    Effect of Loading Rate and Confining Pressure on Strength and Energy Characteristics of Mudstone under Pre-Cracking Damage

    No full text
    In order to explore the deformation and failure law of deep surrounding rock roadway disturbed by strong dynamic pressure, the triaxial mechanical properties of mudstone samples under pre-cracking damage conditions were tested to study the deformation and failure characteristics and energy evolution mechanism in the damage process, under different loading rates and confining pressures. In the mechanical experiment, the specimen is pre-cracked to simulate the damage and failure of surrounding rock during roadway excavation, and the damage degree model of rock specimen is established. The results show that the loading rate and confining pressure have significant effects on the peak strength and energy characteristics of mudstone at the average damage degree of 0.12, and the peak strength increases with the increase in confining pressure and loading rate. Under the same confining pressure, the energy increases first, and then decreases with the increase in loading rate, and the loading rate at the turning point is called the critical loading rate. Under the same confining pressure, the closed stress of mudstone gradually increases with the increase in loading rate, and the closed stress and loading rate show a good linear relationship. Through the fitting relationship, it is found that the fitting correlation coefficient between the closed stress of mudstone and the loading rate is as high as 0.99. The elastic strain energy ratio presents a composite function of exponential function with natural constant e, which is a nonlinear process

    Effect of Loading Rate and Confining Pressure on Strength and Energy Characteristics of Mudstone under Pre-Cracking Damage

    No full text
    In order to explore the deformation and failure law of deep surrounding rock roadway disturbed by strong dynamic pressure, the triaxial mechanical properties of mudstone samples under pre-cracking damage conditions were tested to study the deformation and failure characteristics and energy evolution mechanism in the damage process, under different loading rates and confining pressures. In the mechanical experiment, the specimen is pre-cracked to simulate the damage and failure of surrounding rock during roadway excavation, and the damage degree model of rock specimen is established. The results show that the loading rate and confining pressure have significant effects on the peak strength and energy characteristics of mudstone at the average damage degree of 0.12, and the peak strength increases with the increase in confining pressure and loading rate. Under the same confining pressure, the energy increases first, and then decreases with the increase in loading rate, and the loading rate at the turning point is called the critical loading rate. Under the same confining pressure, the closed stress of mudstone gradually increases with the increase in loading rate, and the closed stress and loading rate show a good linear relationship. Through the fitting relationship, it is found that the fitting correlation coefficient between the closed stress of mudstone and the loading rate is as high as 0.99. The elastic strain energy ratio presents a composite function of exponential function with natural constant e, which is a nonlinear process

    Impact-Rubbings Dynamics Behavior of Magnetic-Liquid Double Suspension Bearing in Electromagnetic Failure Model

    No full text
    Magnetic-liquid double suspension bearing (MLDSB) is a new type of suspension bearing with electromagnetic suspension as the main part and hydrostatic supporting as the auxiliary part. It can greatly improve the bearing capacity and stiffness of rotor bearing system and is suitable for medium speed, heavy load, and frequent starting occasions. The electromagnetic system adopts PD control, and hydrostatic system adopts constant pressure supply model to adjust and control the rotor’s displacement in real time. Once bearing electromagnetic system fails, the “dropping-collision” phenomenon of the rotor will be triggered in operation process, leading to cracking and shedding of magnetic sleeve plating and magnetic pole plating. Then the operational reliability and stability of MLDSB will be greatly reduced. So in this paper, Firstly, the drop impact-rubbing equation of the single DOF bearing system under four failure models (upper unit failure, lower unit failure, bilateral failure, and power amplifier failure) is established. Secondly, the paper simulates influence laws of different structure and operation parameters (plating/liquid film thickness and oil pocket pressure, bias current) on falling rotor impact-rubbings behavior. The results show that: (1) the degree of “dropping-collision” of the rotor under the four failure models is successively as follows: power amplifier failure &gt; upper unit failure &gt; bilateral failure &gt; lower unit failure. (2) Due to the impact-rubbing damping effect of hydraulic oil, it plays a certain inhibitory and buffering role on the phenomenon of “drop-collision”. The degree and probability of “dropping-collision” of rotor can be effectively reduced by increasing the pressure of oil chamber appropriately. (3) The rotor drop impact-rubbing behavior obtained from the test is basically consistent with the theoretical simulation, and the correctness of the theoretical simulation can be effectively verified. The research provides a theoretical basis for fault prevention and diagnosis of MLDSB

    Double Closed-Loop Compound Control Strategy for Magnetic Liquid Double Suspension Bearing

    No full text
    As a new type of suspension bearing, the magnetic liquid double suspension bearing (MLDSB) is mainly supported by electromagnetic suspension and supplemented by hydrostatic support. At present, the MLDSB adopts the regulation strategy of “electromagnetic-position feedback closed-loop, hydrostatic constant-flow supply” (referred to as CFC mode). In the equilibrium position, the external load is carried by the electromagnetic system, and the hydrostatic system produces no supporting force. Thus, the carrying capacity and supporting stiffness of the MLDSB can be reduced. To solve this problem, the double closed-loop control strategy of “electromagnetic system-force feedback inner loop and hydrostatic-position feedback outer loop” (referred to as DCL mode) was proposed to improve the bearing performance and operation stability of the MLDSB. First, the mathematical models of CFC mode and DCL mode of the single DOF supporting system were established. Second, the real-time variation laws of rotor displacement, flow/hydrostatic force, and regulating current/electromagnetic force in the two control modes were plotted, compared, and analyzed. Finally, the influence law of initial current, flow, and controller parameters on the dynamic and static characteristic index were analyzed in detail. The results show that compared with that in CFC mode, the displacement in DCL mode is smaller, and the adjustment time is shorter. The hydrostatic force is equal to the electromagnetic force in DCL mode when the rotor returns to the balance position. Moreover, the system in DCL mode has better robustness, and the initial flow has a more obvious influence on the dynamic and static characteristic indexes. This study provides a theoretical basis for stable suspension control and the safe and reliable operation of the MLDSB
    corecore