3 research outputs found

    Study on carbon monoxide, carbon dioxide and oxygen competitive adsorption properties of bituminous coals

    Get PDF
    In order to clarify the adsorption pattern between coal and CO, CO2 and O2, the competition between CO and CO2 and O2 in coal is studied. Qianjiaying bituminous coal is used as the research object, and the molecular unit parameters are calculated by quantitative analysis method based on the experimental results of Fourier transform infrared spectroscopy (FTIR). The molecular cell structure of Qianjiaying bituminous coal is constructed (C1160H860O80N20). To verify the accuracy of the model, the infrared spectrum of molecules is simulated by quantum chemical calculation, and the calculated results are basically consistent with the experimental results. On this basis, the effects of pressure(0−16 MPa) and temperature(20−60 ℃) on the adsorption of CO, CO2 and O2 by coal are investigated by using the Grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) methods. From the experimental results, it can be concluded that the fitted isothermal adsorption curves conformed to the Langmuir equation. Under the same pressure, the adsorption capacity of CO, CO2 and O2 is weaker as the temperature increases. At the same temperature, there is a positive correlation trend between the burial pressure of coal seam and the adsorption amount. The magnitude of adsorption of single gases CO, CO2 and O2 is CO2 > O2 > CO, and CO2 can reach saturation adsorption state in the first. The competitive adsorption results of binary gases show that the adsorption selectivity of CO2/CO has obvious advantages in low-pressure or shallow buried coal seams. However, the adsorption selectivity of O2/CO did not change significantly with the change of pressure. The competitive adsorption capacity of CO2 is greater than that of CO, and the adsorption capacity of CO2 decreases with the increase of CO concentration; The competitive adsorption of O2 is greater than CO when the ratio of CO to O2 molar concentration is ≤ 1, but the adsorption of CO is greater than O2 when the molar concentration of CO is much greater than O2. Therefore, the molar concentration of CO is high, which inhibits the adsorption capacity of CO2 and O2. In other words, in bituminous coal seams with high abnormal CO concentration, the effect of using CO2 injection to control fire extinguishing is not significant, so the amount of air leakage from the working face should also be controlled to prevent CO from desorption to the coal body and to ensure that the CO concentration in the well is within the permissible range

    Study on the effect of coal microscopic pore structure to its spontaneous combustion tendency

    No full text
    Coal is a porous medium. Due to the large number of pores in coal and the pore size on its surface, usually ranging from millimeter to nanometer, it is difficult to measure and analyze the microscopic pore structure of coal. In order to investigate the effect of the microscopic pore structure of coal on its spontaneous combustion tendency, coal samples from different coal mines of the Kailuan Group were selected as the research objects, and the data of the microscopic pore distribution of three different coal samples were measured by using mercury injection apparatus. The regression analysis of microscopic pore data of coal samples obtained in the mercury injection experiment shows that the correlation coefficients of the regression curves are all greater than 0.94 and the fitting degree is good, indicating that there is a good correlation between the pressure, mercury intake and pore size of the coal samples, indicating that the fractal dimension of pore distribution is very effective. The fractal dimension is generally between 2 and 3, indicating that the microscopic pores of coal samples have good fractal characteristics and meet the fractal theory to describe the distribution characteristics of microscopic pores in porous media. Through the simulation system of natural combustion of coal, the simulation experiment of temperature rise oxidation of different coal samples (gas coal, fat coal, and coke coal) was carried out, and the curve of the concentration of gas products CO and CO2 in the process of temperature rise and oxidation of coal samples was drawn in the experiment. The experimental results show the relationship between the distribution structure of coal pores and its spontaneous combustion tendency, and the coal with a good distribution dimension has a stronger combustion tendency
    corecore