36 research outputs found

    Referring Camouflaged Object Detection

    Full text link
    In this paper, we consider the problem of referring camouflaged object detection (Ref-COD), a new task that aims to segment specified camouflaged objects based on some form of reference, e.g., image, text. We first assemble a large-scale dataset, called R2C7K, which consists of 7K images covering 64 object categories in real-world scenarios. Then, we develop a simple but strong dual-branch framework, dubbed R2CNet, with a reference branch learning common representations from the referring information and a segmentation branch identifying and segmenting camouflaged objects under the guidance of the common representations. In particular, we design a Referring Mask Generation module to generate pixel-level prior mask and a Referring Feature Enrichment module to enhance the capability of identifying camouflaged objects. Extensive experiments show the superiority of our Ref-COD methods over their COD counterparts in segmenting specified camouflaged objects and identifying the main body of target objects. Our code and dataset are publicly available at https://github.com/zhangxuying1004/RefCOD

    TeMO: Towards Text-Driven 3D Stylization for Multi-Object Meshes

    Full text link
    Recent progress in the text-driven 3D stylization of a single object has been considerably promoted by CLIP-based methods. However, the stylization of multi-object 3D scenes is still impeded in that the image-text pairs used for pre-training CLIP mostly consist of an object. Meanwhile, the local details of multiple objects may be susceptible to omission due to the existing supervision manner primarily relying on coarse-grained contrast of image-text pairs. To overcome these challenges, we present a novel framework, dubbed TeMO, to parse multi-object 3D scenes and edit their styles under the contrast supervision at multiple levels. We first propose a Decoupled Graph Attention (DGA) module to distinguishably reinforce the features of 3D surface points. Particularly, a cross-modal graph is constructed to align the object points accurately and noun phrases decoupled from the 3D mesh and textual description. Then, we develop a Cross-Grained Contrast (CGC) supervision system, where a fine-grained loss between the words in the textual description and the randomly rendered images are constructed to complement the coarse-grained loss. Extensive experiments show that our method can synthesize high-quality stylized content and outperform the existing methods over a wide range of multi-object 3D meshes. Our code and results will be made publicly availabl

    FLM-101B: An Open LLM and How to Train It with $100K Budget

    Full text link
    Large language models (LLMs) have achieved remarkable success in NLP and multimodal tasks, among others. Despite these successes, two main challenges remain in developing LLMs: (i) high computational cost, and (ii) fair and objective evaluations. In this paper, we report a solution to significantly reduce LLM training cost through a growth strategy. We demonstrate that a 101B-parameter LLM with 0.31T tokens can be trained with a budget of 100K US dollars. Inspired by IQ tests, we also consolidate an additional range of evaluations on top of existing evaluations that focus on knowledge-oriented abilities. These IQ evaluations include symbolic mapping, rule understanding, pattern mining, and anti-interference. Such evaluations minimize the potential impact of memorization. Experimental results show that our model, named FLM-101B, trained with a budget of 100K US dollars, achieves performance comparable to powerful and well-known models, e.g., GPT-3 and GLM-130B, especially on the additional range of IQ evaluations. The checkpoint of FLM-101B is released at https://huggingface.co/CofeAI/FLM-101B

    Registered Data-Centered Lab Management System Based on Data Ownership Safety Architecture

    No full text
    University and college laboratories are important places to train professional and technical personnel. Various regulatory departments in colleges and universities still rely on traditional laboratory management in research projects, which are prone to problems such as untimely information and data transmission. The present study aimed to propose a new method to solve the problem of data islands, explicit ownership, conditional sharing, data safety, and efficiency during laboratory data management. Hence, this study aimed to develop a data-centered lab management system that enhances the safety of lab data management and allows the data owners of the labs to control data sharing with other users. The architecture ensures data privacy by binding data ownership with a person using a key management method. To achieve data flow safely, data ownership conversion through the process of authorization and confirmation was introduced. The designed lab management system enables laboratory regulatory departments to receive data in a secure form by using this platform, which could solve data sharing barriers. Finally, the proposed system was applied and run in different server environments by implementing data security registration, authorization, confirmation, and conditional sharing using SM2, SM4, RSA, and AES algorithms. The system was evaluated in terms of the execution time for several lab data with different sizes. The findings of this study indicate that the proposed strategy is safe and efficient for lab data sharing across domains

    Molecular microbial prospection for oil and gas and its preliminary application

    No full text
    Due to the advantages such as low multi-solution, high signal-to-noise ratio, low environmental impact, high efficiency and low cost, microbial prospection for oil and gas has been accepted for petroleum exploreration. With the rapid development of high-throughput sequencing, molecular biology and bioinformatics, describing the changes of specific oil and gas indicator micro-organisms from the perspective of microbial community as a whole has become an valuable progress of microbial exploration method for the future. In this paper, soil sampling, DNA extraction and analysis, discriminant model development and favorable area prediction are introduced, and soil DNA extraction as well as oil/gas indicator micro-organism detection are emphasized. With the study of industrial-grade DNA extraction technology, Griffth method has been considered as the best effect for the extraction and purification of soil microbial DNA. For projects with a large sample number, high-throughput pipetting workstations and commercial multi-well plate DNA extraction kits can greatly improve working efficiency. Integrated stable isotope probes and the molecular detection of high-throughput sequencing showed that the main hydrocarbon indicator microorganism strains typically imply the expected distribution. High frequency oil indicator bacteria (AMNR) are Arthrobacter, Mycobacterium, Nocardia, and Rhodospirillum, while high frequency gas indicator bacteria include Methylococcus, Methylobacterium, and Methylocystis. The preliminary application in the Hangjinqi area shows that the microbial molecular exploration technology can significantly improve the oil and gas identification accuracy in loess tableland regions, and has a good effect on the evaluation of oil and gas bearing property, which provides a reference for the selection of favorable tight gas regions in the northern part of Ordos Basin

    Semicarbazide Accumulation, Distribution and Chemical Forms in Scallop (Chlamys farreri) after Seawater Exposure

    No full text
    Semicarbazide is a newly recognized marine pollutant and has the potential to threaten marine shellfish, the ecological equilibrium and human health. In this study, we examined the accumulation, distribution, and chemical forms of semicarbazide in scallop tissues after exposure to 10, 100, and 1000 μg/L for 30 d at 10 °C. We found a positive correlation between semicarbazide residues in the scallops and the exposure concentration (p < 0.01). Semicarbazide existed primarily in free form in all tissues while bound semicarbazide ranged from 12.1 to 32.7% and was tissue-dependent. The time for semicarbazide to reach steady-state enrichment was 25 days and the highest levels were found in the disgestive gland, followed by gills while levels in gonads and mantle were similar and were lowest in adductor muscle. The bioconcentration factor (BCF) of semicarbazide at low exposure concentrations was higher than that at high exposure concentrations. These results indicated that the scallop can uptake semicarbazide from seawater and this affects the quality and safety of these types of products when used as a food source

    Surveillance and Risk Assessment of Diarrhetic and Paralytic Shellfish Toxins in the Tangshan Shellfish Culture Areas of Bohai Sea, China

    No full text
    Shellfish are filter feeders that can accumulate toxic algae and their related toxins, increasing risk when consumed. Shellfish toxins can directly affect the physiological activities of marine organisms and threaten the stability of marine ecosystems. Ultimately, these toxins pass through the food chain and can endanger human health and economic security. Globally, shellfish poisoning incidents have occurred in many countries. The Bohai Sea is a semi-enclosed inland sea, where severe eutrophication of the seawater has occurred in recent years, leading to harmful algal blooms. To date, no simultaneous surveillance of diarrhetic shellfish poisonings (DSP) and paralytic shellfish poisonings (PSP) have been reported in the Tangshan shellfish culture area.To better understand shellfish toxin pollution in the shellfish culture areas of Tangshan and the dietary and health risks to residents, Mactra veneriformis, Ruditapes philippinarum, Rapana venosa, Crassostrea gigas, Cyclina sinensis, Meretrix meretrix, Mercenaria mercenaria, and Azumapecten farreri were collected for toxin monitoring from the Tangshan shellfish culture areas in Bohai Sea from October 2019 to September 2020. A total of 34 samples were collected for each shellfish species. Each sample weighed approximately 3 kg. All samples were transported to the laboratory on ice. In the laboratory, samples were flushed with tap water to remove sand and silt and shucked to collect the soft tissue. The tissue was thoroughly homogenized with a household blender, and approximately 50 g of tissue from each sample was stored at –20 ℃ until required for analysis. Five DSP including okadaic acid (OA), dinophysistoxin 1 (DTX1), dinophysistoxin 2 (DTX2), yessotoxin (YTX), and azaspiracid 1 (AZA1), and 14 PSP including saxitoxin (STX), neosaxitoxin (NEO), gonyautoxin 1/4 (GTX1/4), gonyautoxin 2/3 (GTX2/3), decarbamoylsaxitoxin (dcSTX), decarbamoylneosaxitoxin (dcNEO), decarbamoylgonyautoxin 2/3 (dcGTX2/3), gonyautoxin 5 (GTX5), gonyautoxin 6 (GTX6), and N-sulfocarbamoyl toxin 1/2 (C1/2) were tested using high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). The detection limit of the DSP method was 5 μg/kg, and the detection limit of the PSP method was 10–20 μg/kg.The DSP toxins were not detected in any of the samples. Several PSP toxins were detected, including saxitoxin (STX), gonyautoxin 1 (GTX1), gonyautoxin 2 (GTX2), and decarbamoylgonyautoxin 3 (dcGTX3). The GTX1 levels were the highest overall PSP toxin at 537.95 μg/kg in April. The results revealed positive rates of PSP for R. philippinarum, C. gigas, M. meretrix, and M. mercenaria, which were 11.76%, 47.06%, 5.90%, and 8.82%, respectively. Of the toxins tested, none were detected in the remaining samples. The highest PSP toxin levels in the positive samples from R. philippinarum, C. gigas, M. meretrix, and M. mercenaria were 414.26, 532.57, 452.77 and 195.46 μg STXeq/kg, respectively. We ranked the species in order of highest to lowest PSP toxin levels as: C. gigas > M. meretrix > R. philippinarum > M. mercenaria. In general, the toxin content of the shellfish in this area was lower than the EU limit of 800 μg STXeq/kg. The composition of shellfish toxins is related to many factors, including the sampling location and collection time. The toxin accumulation capacity by shellfish is also affected by many factors, including water pollution, salinity, light intensity, and most importantly, the species and density of the toxic algae in the surrounding waters.The ecological risk assessment methods used in this study were the risk quotient method (RQ) and the point assessment method. The RQ method is primarily used for semi-quantitative risk assessments to determine whether the pollutant concentrations have harmful effects. The point assessment model is a dietary exposure assessment tool. We applied risk quotient and point assessment methods to determine risk. There was no safety risk in the consumption of shellfish harvested from the Tangshan coastal study area during the study period. According to the point assessment method, at this specific time it was safe to consume the shellfish as the toxin levels were low. This analysis indicated that the safe single intake quantity of shellfish during months with high levels of shellfish-enriched toxins was reduced. As the toxin levels accumulating in different shellfish tissues can vary greatly, each sampled tissue was analyzed separately. The results indicate when there is a high accumulation of shellfish toxins present, consumers should restrict their consumption to a single serving rather than regularly consuming shellfish as part of their daily diet. The safety risk assessment results indicate that the seven shellfish species posed no food safety risk during the study period.This study provides a scientific basis for improving shellfish management practices to ensure shellfish are safe for consumption. This study analyzed the effects of toxin residues in shellfish species; different seasons and different locations vary in toxin content and components. We recommended consumers regulate their consumption to avoid potential poisoning events. This study provides social, economic, and ecological benefits in promoting green and healthy aquaculture of shellfish products, by ensuring the safety of shellfish products for consumer health. However, continuous long-term monitoring of both phytoplankton and biotoxins are recommended to ensure the development of the shellfish aquaculture industry and to support consumer health

    Characteristics of the Gut Microbiota in Young Adults with Autism Spectrum Disorder

    No full text
    Background: Although the characteristics of the gut microbiota of children with autism spectrum disorder (ASD) have been well studied, those of young adults with ASD have seldom been reported. Methods: Using 16S rRNA gene sequencing, we characterized the gut microbiota of 19 young adults with ASD and compared them with that of 19 healthy adults. A random forest prediction model was used to distinguish between the two groups at the genus level. Results: The abundance levels of one phylum, seven families, and 18 genera in adults with ASD were significantly different from those of controls. The genus Phascolarctobacterium was significantly enriched in adults with ASD, which might elicit ASD-like behavior through production of propionate. In addition, a random forest model identified 15 genera that could distinguish adults with ASD from healthy controls with areas under the receiver operating curve of 92.86%, and ten of them were biomarkers identified by LEfSe. Conclusions: Our results identified specific gut bacteria associated with ASD, and the successful application of certain genera in the prediction model further supports the association between gut microbiota and ASD
    corecore