11,855 research outputs found

    Search for C=+C=+ charmonium and XYZ states in e+e−→γ+He^+e^-\to \gamma+ H at BESIII

    Full text link
    Within the framework of nonrelativistic quantum chromodynamics, we study the production of C=+C=+ charmonium states HH in e+e−→γ + He^+e^-\to \gamma~+~H at BESIII with H=ηc(nS)H=\eta_c(nS) (n=1, 2, 3, and 4), χcJ(nP)\chi_{cJ}(nP) (n=1, 2, and 3), and 1D2(nD)^1D_2(nD) (n=1 and 2). The radiative and relativistic corrections are calculated to next-to-leading order for SS and PP wave states. We then argue that the search for C=+C=+ XYZXYZ states such as X(3872)X(3872), X(3940)X(3940), X(4160)X(4160), and X(4350)X(4350) in e+e−→γ + He^+e^-\to \gamma~+~H at BESIII may help clarify the nature of these states. BESIII can search XYZXYZ states through two body process e+e−→γHe^+e^-\to \gamma H, where HH decay to J/ψπ+π−J/\psi \pi^+\pi^-, J/ψϕJ/\psi \phi, or DDˉD \bar D. This result may be useful in identifying the nature of C=+C=+ XYZXYZ states. For completeness, the production of C=+C=+ charmonium in e+e−→γ+ He^+e^-\to \gamma +~H at B factories is also discussed.Comment: Comments and suggestions are welcome. References are update

    Triggered massive and clustered stars formation by together H II regions G38.91-0.44 and G39.30-1.04

    Full text link
    We present the radio continuum, infrared, and CO molecular observations of infrared dark cloud (IRDC) G38.95-0.47 and its adjacent H II regions G38.91-0.44 (N74), G38.93-0.39 (N75), and G39.30-1.04. The Purple Mountain Observation (PMO) 13.7 m radio telescope was used to detect12CO J=1-0,13CO J=1-0 and C18O J=1-0 lines. The carbon monoxide (CO) molecular observations can ensure the real association between the ionized gas and the neutral material observed nearby. To select young stellar objects (YSOs) associated this region, we used the GLIMPSE I catalog. The13CO J=1-0 emission presents two large cloud clumps. The clump consistent with IRDC G38.95-0.47 shows a triangle- like shape, and has a steep integrated-intensity gradient toward H II regions G38.91-0.44 and G39.30-1.04, suggesting that the two H II regions have expanded into the IRDC. Four submillmeter continuum sources have been detected in the IRDC G38.95-0.47. Only the G038.95-00.47-M1 source with a mass of 117 Msun has outflow and infall motions, indicating a newly forming massive star. We detected a new collimated outflow in the clump compressed by G38.93-0.39. The derived ages of the three H II regions are 6.1*10^5yr, 2.5*10^5yr, and 9.0*10^5yr, respectively. In the IRDC G38.95-0.47, the significant enhancement of several Class I YSOs indicates the presence of some recently formed stars. Comparing the ages of these H II regions with YSOs (Class I sources and massive G038.95-00.47-M1 source), we suggest that YSOs may be triggered by G38.91-0.44 and G39.30-1.04 together, which supports the radiatively driven implosion model. It may be the first time that the triggered star formation has occurred in the IRDC compressed by two H II regions. The new detected outflow may be driven by a star cluster.Comment: 6 pages, 4 figures, Accepted for publication in A&
    • …
    corecore