26,488 research outputs found
Forward Private Searchable Symmetric Encryption with Optimized I/O Efficiency
Recently, several practical attacks raised serious concerns over the security
of searchable encryption. The attacks have brought emphasis on forward privacy,
which is the key concept behind solutions to the adaptive leakage-exploiting
attacks, and will very likely to become mandatory in the design of new
searchable encryption schemes. For a long time, forward privacy implies
inefficiency and thus most existing searchable encryption schemes do not
support it. Very recently, Bost (CCS 2016) showed that forward privacy can be
obtained without inducing a large communication overhead. However, Bost's
scheme is constructed with a relatively inefficient public key cryptographic
primitive, and has a poor I/O performance. Both of the deficiencies
significantly hinder the practical efficiency of the scheme, and prevent it
from scaling to large data settings. To address the problems, we first present
FAST, which achieves forward privacy and the same communication efficiency as
Bost's scheme, but uses only symmetric cryptographic primitives. We then
present FASTIO, which retains all good properties of FAST, and further improves
I/O efficiency. We implemented the two schemes and compared their performance
with Bost's scheme. The experiment results show that both our schemes are
highly efficient, and FASTIO achieves a much better scalability due to its
optimized I/O
- …