13,560 research outputs found

    Insignificant shadow detection for video segmentation

    Get PDF
    To prevent moving cast shadows from being misunderstood as part of moving objects in change detection based video segmentation, this paper proposes a novel approach to the cast shadow detection based on the edge and region information in multiple frames. First, an initial change detection mask containing moving objects and cast shadows is obtained. Then a Canny edge map is generated. After that, the shadow region is detected and removed through multiframe integration, edge matching, and region growing. Finally, a post processing procedure is used to eliminate noise and tune the boundaries of the objects. Our approach can be used for video segmentation in indoor environment. The experimental results demonstrate its good performance

    Automatic recognition of radar signals based on time-frequency image shape character

    Get PDF
    Radar signal recognition is one of the key technologies of modern electronic surveillance systems. Time-frequency image provides a new way for recognizing the radar signal. In this paper, a series of image processing methods containing image enhancement, image threshold binarization and mathematical morphology is utilized to extract the shape character of smoothed pseudo wigner-ville time-frequency distribution of radar signal. And then the identification of radar signal is realized by the character. Simulation results of eight kinds of typical radar signal demonstrate that when signal noise ratio (SNR) is greater than -3 dB, the Legendre moments shape character of the time-frequency image is very stable. Moreover, the recognition rate by the character is more than 90 per cent except for the FRANK code signal when SNR > -3 dB. Test also show that the proposed method can effectively recognize radar signal with less character dimension through compared with exitsing algorithms.Defence Science Journal, 2013, 63(3), pp.308-314, DOI:http://dx.doi.org/10.14429/dsj.63.240

    Analysis of the Influence of Fish Behavior on the Hydrodynamics of Net Cage

    Get PDF
    In net cage hydrodynamic analysis, drag force of net is dependent on the physical dimensions of the net cage, the Solidity ratio, the Reynolds number and the projected area of the net, which is illustrated in numerous previous researches. However, rare studies attempt to investigate the effect of fish behavior. Thus a net-fluid interaction model and a simplified fish model were proposed for analyzing the effects of fish behavior on the net cage. A series of physical model tests were conducted to validate the numerical model, which indicates models can simulate the stocked net cage in the current accurately. The simulation results indicate that circular movement of fish leads to a low pressure zone at the center of net cage, which causes a strong vertical flow along the center line of the net cage. The drag force on the net cage is significantly decreased with the increasing fish stocking density

    (E)-2-{3-[4-(Diphenyl­amino)styr­yl]-5,5-dimethyl­cyclo­hex-2-enyl­idene}­malono­nitrile

    Get PDF
    In the title compound, C31H27N3, the cyclo­hexene ring has an envelope configuration. In the crystal structure, there is an 34 Å3 void around the inversion center, but the low electron density (0.13 e Å−3) in the difference Fourier map suggests no solvent mol­ecule occupying this void. No hydrogen bonding is found in the crystal structure

    Rank-One Projections With Adaptive Margins for Face Recognition

    Full text link
    corecore