23,131 research outputs found
The energy spectrum symmetry of Heisenberg model in Fock space
We prove strictly that one dimension spin 1/2 Heisenberg model has a symmetry
of energy spectrum between its subspace and the subspace of the Fock
space. Our proof is completed by introducing two general quantum operations.
One is a flip operation of spin direction and another is a mirror reflection of
spin sites.Comment: Revising version, 7 preprint pages, no figures; Published version
contains some revisions in Languag
Non-transferable unidirectional proxy re-encryption scheme for secure social cloud storage sharing
(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Proxy re-encryption (PRE), introduced by Blaze et al. in 1998, allows a semi-trusted proxy with the re-encryption key to translatea ciphertext under the delegator into another ciphertext, which can be decrypted by the delegatee. In this process, the proxy is required to know nothing about the plaintext. Many PRE schemes have been proposed so far, however until now almost all the unidirectional PRE schemes suffer from the transferable property. That is, if the proxy and a set of delegatees collude, they can re-delegate the delegator's decryption rights to the other ones, while the delegator has no agreement on this. Thus designing non-transferable unidirectional PRE scheme is an important open research problem in the field. In this paper, we tackle this open problem by using the composite order bilinear pairing. Concretely, we design a non-transferable unidirectional PRE scheme based on Hohenberger et al.'s unidirectional PRE scheme. Furthermore, we discuss our scheme's application to secure cloud storage, especially for sharing private multimedia content for social cloud storage users.Peer ReviewedPostprint (author's final draft
Device-free Localization using Received Signal Strength Measurements in Radio Frequency Network
Device-free localization (DFL) based on the received signal strength (RSS)
measurements of radio frequency (RF)links is the method using RSS variation due
to the presence of the target to localize the target without attaching any
device. The majority of DFL methods utilize the fact the link will experience
great attenuation when obstructed. Thus that localization accuracy depends on
the model which describes the relationship between RSS loss caused by
obstruction and the position of the target. The existing models is too rough to
explain some phenomenon observed in the experiment measurements. In this paper,
we propose a new model based on diffraction theory in which the target is
modeled as a cylinder instead of a point mass. The proposed model can will
greatly fits the experiment measurements and well explain the cases like link
crossing and walking along the link line. Because the measurement model is
nonlinear, particle filtering tracing is used to recursively give the
approximate Bayesian estimation of the position. The posterior Cramer-Rao lower
bound (PCRLB) of proposed tracking method is also derived. The results of field
experiments with 8 radio sensors and a monitored area of 3.5m 3.5m show that
the tracking error of proposed model is improved by at least 36 percent in the
single target case and 25 percent in the two targets case compared to other
models.Comment: This paper has been withdrawn by the author due to some mistake
- …