176 research outputs found

    Initial carrier-envelope phase of few-cycle pulses determined by THz emission from air plasma

    Full text link
    The evolution of THz waveform generated in air plasma provides a sensitive probe to the variation of the carrier envelope phase (CEP) of propagating intense few-cycle pulses. Our experimental observation and calculation reveal that the number and positions of the inversion of THz waveform are dependent on the initial CEP, which is near 0.5{\pi} constantly under varied input pulse energies when two inversions of THz waveform in air plasma become one. This provides a method of measuring the initial CEP in an accuracy that is only limited by the stability of the driving few-cycle pulses.Comment: 13 pages, 4 figure

    Pure Even Harmonic Generation from Oriented CO in Linearly Polarized Laser Fields

    Full text link
    The first high harmonic spectrum, containing only the odd orders, was observed in experiments 30 years ago (1987). However, a spectrum containing pure even harmonics has never been observed. We investigate the generation of pure even harmonics from oriented CO molecules in linearly polarized laser fields employing the time-dependent density-functional theory. We find that the even harmonics, with no odd orders, are generated with the polarization perpendicular to the laser polarization, when the molecular axis of CO is perpendicular to the laser polarization. Generation of pure even harmonics reveals a type of dipole acceleration originating from the permanent dipole moment. This phenomenon exists in all system with permanent dipole moments, including bulk crystal and polyatomic molecules

    Driving positron beam acceleration with coherent transition radiation

    Get PDF
    Positron acceleration in plasma wakefield faces significant challenges since the positron beam must be pre-generated and precisely coupled into the wakefield, and most critically, suffers from defocusing issues. Here we propose a scheme that utilizes laser-driven electrons to produce, inject and accelerate positrons in a single set-up. The high-charge electron beam from wakefield acceleration creates copious electron-positron pairs via the Bethe-Heitler process, followed by enormous coherent transition radiation due to the electrons' exiting from the metallic foil. Simulation results show that the coherent transition radiation field reaches up to 10's GV m-1, which captures and accelerates the positrons to cut-off energy of 1.5 GeV with energy peak of 500 MeV and energy spread is about 24.3%. An external longitudinal magnetic field of 30 T is also applied to guide the electrons and positrons during the acceleration process. This proposed method offers a promising way to obtain GeV fast positron sources

    Generation of Intense High-Order Vortex Harmonics

    Full text link
    This paper presents the method for the first time to generate intense high-order optical vortices that carry orbital angular momentum in the extreme ultraviolet region. In three-dimensional particle-in-cell simulation, both the reflected and transmitted light beams include high-order harmonics of the Laguerre-Gaussian (LG) mode when a linearly polarized LG laser pulse impinges on a solid foil. The mode of the generated LG harmonic scales with its order, in good agreement with our theoretical analysis. The intensity of the generated high-order vortex harmonics is close to the relativistic region, and the pulse duration can be in attosecond scale. The obtained intense vortex beam possesses the combined properties of fine transversal structure due to the high-order mode and the fine longitudinal structure due to the short wavelength of the high-order harmonics. Thus, the obtained intense vortex beam may have extraordinarily promising applications for high-capacity quantum information and for high-resolution detection in both spatial and temporal scales because of the addition of a new degree of freedom

    Terahertz imaging with sub-wavelength resolution by femtosecond laser filament in air

    Full text link
    Terahertz (THz) imaging provides cutting edge technique in biology, medical sciences and non-destructive evaluation. However, due to the long wavelength of the THz wave, the obtained resolution of THz imaging is normally a few hundred microns and is much lower than that of the traditional optical imaging. We introduce a sub-wavelength resolution THz imaging technique which uses the THz radiation generated by a femtosecond laser filament in air as the probe. This method is based on the fact that the femtosecond laser filament forms a waveguide for the THz wave in air. The diameter of the THz beam, which propagates inside the filament, varies from 20 {\mu}m to 50 {\mu}m, which is significantly smaller than the wavelength of the THz wave. Using this highly spatially confined THz beam as the probe, THz imaging with resolution as high as 20 {\mu}m (~{\lambda}/38) can be realized.Comment: 10 pages, 7 figure

    Waveform-Controlled Terahertz Radiation from the Air Filament Produced by Few-Cycle Laser Pulses

    Full text link
    Waveform-controlled Terahertz (THz) radiation is of great importance due to its potential application in THz sensing and coherent control of quantum systems. We demonstrated a novel scheme to generate waveform-controlled THz radiation from air plasma produced when carrier-envelope-phase (CEP) stabilized few-cycle laser pulses undergo filamentation in ambient air. We launched CEP-stabilized 10 fs-long (~ 1.7 optical cycles) laser pulses at 1.8 {\mu}m into air and found that the generated THz waveform can be controlled by varying the filament length and the CEP of driving laser pulses. Calculations using the photocurrent model and including the propagation effects well reproduce the experimental results, and the origins of various phase shifts in the filament are elucidated.Comment: 5pages, 5 figure
    corecore