517 research outputs found

    In-plane thermal conductivity of large single crystals of Sm-substituted (Y1x_{1-x}Smx_{x})Ba2_{2}Cu3_{3}O7δ_{7-\delta}

    Full text link
    We have investigated the in-plane thermal conductivity κab(T,H)\kappa_{ab}(T,H) of large single crystals of optimally oxygen-doped (Y1x_{1-x},Smx_{x})Ba2_{2}Cu3_{3}O7δ_{7-\delta} (xx=0, 0.1, 0.2 and 1.0) and YBa2_{2}(Cu1y_{1-y}Zny_{y})3_{3}O7δ_{7-\delta}(yy=0.0071) as functions of temperature and magnetic field (along the c axis). For comparison, the temperature dependence of κab\kappa_{ab} for as-grown crystals with the corresponding compositions are presented. The nonlinear field dependence of κab\kappa_{ab} for all crystals was observed at relatively low fields near a half of TcT_{c}. We make fits of the κ(H)\kappa(H) data to an electron contribution model, providing both the mean free path of quasiparticles 0\ell_{0} and the electronic thermal conductivity κe\kappa_{e}, in the absence of field. The local lattice distortion due to the Sm substitution for Y suppresses both the phonon and electron contributions. On the other hand, the light Zn doping into the CuO 2_{2} planes affects solely the electron component below TcT_{c}, resulting in a substantial decrease in 0\ell_{0} .Comment: 7 pages,4 figures,1 tabl

    The onset of the vortex-like Nernst signal above Tc in La_{2-x}Sr_xCuO_4 and Bi_2Sr_{2-y}La_yCuO_6

    Full text link
    The diffusion of vortices down a thermal gradient produces a Josephson signal which is detected as the vortex Nernst effect. In a recent report, Xu et al., Nature 406, 486 (2000), an enhanced Nernst signal identified with vortex-like excitations was observed in a series of La_{2-x}Sr_xCuO_4 (LSCO) crystals at temperatures 50-100 K above T_c. To pin down the onset temperature T_{\nu} of the vortex-like signal in the lightly doped regime (0.03 < x < 0.07), we have re-analyzed in detail the carrier contribution to the Nernst signal. By supplementing new Nernst measurements with thermopower and Hall-angle data, we isolate the off-diagonal Peltier conductivity \alpha_{xy} and show that its profile provides an objective determination of T_{\nu}. With the new results, we revise the phase diagram for the fluctuation regime in LSCO to accomodate the lightly doped regime. In the cuprate Bi_2Sr_{2-y}La_yCuO_6, we find that the carrier contribution is virtually negligible for y in the range 0.4-0.6. The evidence for an extended temperature interval with vortex-like excitations is even stronger in this system. Finally, we discuss how T_{\nu} relates to the pseudogap temperature T* and the implications of strong fluctuations between the pseudogap state and the d-wave superconducting state.Comment: 10 pages, 10 figure

    Quasiparticle thermal Hall angle and magnetoconductance in YBa_2Cu_3O_x

    Full text link
    We present a way to extract the quasiparticle (qp) thermal conductivity Kappa_e and mean-free-path in YBa_2Cu_3O_x, using the thermal Hall effect and the magnetoconductance of Kappa_e. The results are very consistent with heat capacity experiments. Moreover, we find a simple relation between the thermal Hall angle Theta_Q and the H-dependence of Kappa_e, as well as numerical equality between Theta_Q and the electrical Hall angle. The findings also reveal an anomalously anisotropic scattering process in the normal state.Comment: 4 pages in Tex, 5 figures in EPS; replaced on 5/12/99, minor change

    Anomalous Transport Phenomena in Fermi Liquids with Strong Magnetic Fluctuations

    Full text link
    In many strongly correlated electron systems, remarkable violation of the relaxation time approximation (RTA) is observed. The most famous example would be high-Tc superconductors (HTSCs), and similar anomalous transport phenomena have been observed in metals near their antiferromagnetic (AF) quantum critical point (QCP). Here, we develop a transport theory involving resistivity and Hall coefficient on the basis of the microscopic Fermi liquid theory, by considering the current vertex correction (CVC). In nearly AF Fermi liquids, the CVC accounts for the significant enhancements in the Hall coefficient, magnetoresistance, thermoelectric power, and Nernst coefficient in nearly AF metals. According to the numerical study, aspects of anomalous transport phenomena in HTSC are explained in a unified way by considering the CVC, without introducing any fitting parameters; this strongly supports the idea that HTSCs are Fermi liquids with strong AF fluctuations. In addition, the striking \omega-dependence of the AC Hall coefficient and the remarkable effects of impurities on the transport coefficients in HTSCs appear to fit naturally into the present theory. The present theory also explains very similar anomalous transport phenomena occurring in CeCoIn5 and CeRhIn5, which is a heavy-fermion system near the AF QCP, and in the organic superconductor \kappa-(BEDT-TTF).Comment: 100 pages, Rep. Prog. Phys. 71, 026501 (2008

    Bose-Einstein condensation of strongly correlated electrons and phonons in cuprate superconductors

    Full text link
    The long-range Froehlich electron-phonon interaction has been identified as the most essential for pairing in high-temperature superconductors owing to poor screening, as is now confirmed by optical, isotope substitution, recent photoemission and some other measurements. I argue that low energy physics in cuprate superconductors is that of superlight small bipolarons, which are real-space hole pairs dressed by phonons in doped charge-transfer Mott insulators. They are itinerant quasiparticles existing in the Bloch states at low temperatures as also confirmed by continuous-time quantum Monte-Carlo algorithm (CTQMC) fully taking into account realistic Coulomb and long-range Froehlich interactions. Here I suggest that a parameter-free evaluation of Tc, unusual upper critical fields, the normal state Nernst effect, diamagnetism, the Hall-Lorenz numbers and giant proximity effects strongly support the three-dimensional (3D) Bose-Einstein condensation of mobile small bipolarons with zero off-diagonal order parameter above the resistive critical temperature Tc at variance with phase fluctuation scenarios of cuprates.Comment: 35 pages, 10 figures, to appear in the special volume of Journal of Physics: Condensed Matte

    Anomalous Heat Conduction and Anomalous Diffusion in Low Dimensional Nanoscale Systems

    Full text link
    Thermal transport is an important energy transfer process in nature. Phonon is the major energy carrier for heat in semiconductor and dielectric materials. In analogy to Ohm's law for electrical conductivity, Fourier's law is a fundamental rule of heat transfer in solids. It states that the thermal conductivity is independent of sample scale and geometry. Although Fourier's law has received great success in describing macroscopic thermal transport in the past two hundreds years, its validity in low dimensional systems is still an open question. Here we give a brief review of the recent developments in experimental, theoretical and numerical studies of heat transport in low dimensional systems, include lattice models, nanowires, nanotubes and graphenes. We will demonstrate that the phonon transports in low dimensional systems super-diffusively, which leads to a size dependent thermal conductivity. In other words, Fourier's law is breakdown in low dimensional structures

    Spectroscopic scanning tunneling microscopy insights into Fe-based superconductors

    Get PDF
    In the first three years since the discovery of Fe-based high Tc superconductors, scanning tunneling microscopy (STM) and spectroscopy have shed light on three important questions. First, STM has demonstrated the complexity of the pairing symmetry in Fe-based materials. Phase-sensitive quasiparticle interference (QPI) imaging and low temperature spectroscopy have shown that the pairing order parameter varies from nodal to nodeless s\pm within a single family, FeTe1-xSex. Second, STM has imaged C4 -> C2 symmetry breaking in the electronic states of both parent and superconducting materials. As a local probe, STM is in a strong position to understand the interactions between these broken symmetry states and superconductivity. Finally, STM has been used to image the vortex state, giving insights into the technical problem of vortex pinning, and the fundamental problem of the competing states introduced when superconductivity is locally quenched by a magnetic field. Here we give a pedagogical introduction to STM and QPI imaging, discuss the specific challenges associated with extracting bulk properties from the study of surfaces, and report on progress made in understanding Fe-based superconductors using STM techniques.Comment: 36 pages, 23 figures, 229 reference

    Phosphorene: Fabrication, Properties and Applications

    Full text link
    Phosphorene, the single- or few-layer form of black phosphorus, was recently rediscovered as a twodimensional layered material holding great promise for applications in electronics and optoelectronics. Research into its fundamental properties and device applications has since seen exponential growth. In this Perspective, we review recent progress in phosphorene research, touching upon topics on fabrication, properties, and applications; we also discuss challenges and future research directions. We highlight the intrinsically anisotropic electronic, transport, optoelectronic, thermoelectric, and mechanical properties of phosphorene resulting from its puckered structure in contrast to those of graphene and transition-metal dichalcogenides. The facile fabrication and novel properties of phosphorene have inspired design and demonstration of new nanodevices; however, further progress hinges on resolutions to technical obstructions like surface degradation effects and non-scalable fabrication techniques. We also briefly describe the latest developments of more sophisticated design concepts and implementation schemes that address some of the challenges in phosphorene research. It is expected that this fascinating material will continue to offer tremendous opportunities for research and development for the foreseeable future.Comment: invited perspective for JPC
    corecore