166,492 research outputs found

    Nonlinear suppression of time-reversals in PT-symmetric optical couplers

    Full text link
    We reveal a generic connection between the effect of time-reversals and nonlinear wave dynamics in systems with parity-time (PT) symmetry, considering a symmetric optical coupler with balanced gain and loss where these effects can be readily observed experimentally. We show that for intensities below a threshold level, the amplitudes oscillate between the waveguides, and the effects of gain and loss are exactly compensated after each period due to {periodic time-reversals}. For intensities above a threshold level, nonlinearity suppresses periodic time-reversals leading to the symmetry breaking and a sharp beam switching to the waveguide with gain. Another nontrivial consequence of linear PT-symmetry is that the threshold intensity remains the same when the input intensities at waveguides with loss and gain are exchanged.Comment: 5 pages, 4 figure

    Direct measurement of doping density and barrier lowering effect with bias in quantum wells

    Get PDF
    An experimental method for determining the doping density in thin-sheet semiconductor material such as quantum wells (QWs) is demonstrated in GaAs/AlGaAs multiquantum-well infra-red photodetectors. The results agree very well with the conventional Hall measurement method. Barrier lowering effect with bias in QWs is determined experimentally

    FFT-LB modeling of thermal liquid-vapor systems

    Full text link
    We further develop a thermal LB model for multiphase flows. In the improved model, we propose to use the FFT scheme to calculate both the convection term and external force term. The usage of FFT scheme is detailed and analyzed. By using the FFT algorithm spatiotemporal discretization errors are decreased dramatically and the conservation of total energy is much better preserved. A direct consequence of the improvement is that the unphysical spurious velocities at the interfacial regions can be damped to neglectable scale. Together with the better conservation of total energy, the more accurate flow velocities lead to the more accurate temperature field which determines the dynamical and final states of the system. With the new model, the phase diagram of the liquid-vapor system obtained from simulation is more consistent with that from theoretical calculation. Very sharp interfaces can be achieved. The accuracy of simulation results are also verified by the Laplace law. The FFT scheme can be easily applied to other models for multiphase flows.Comment: 34 pages, 21 figure

    The power spectrum of galaxies in the 2dF 100k redshift survey

    Get PDF
    We compute the real-space power spectrum and the redshift-space distortions of galaxies in the 2dF 100k galaxy redshift survey using pseudo-Karhunen-Loeve eigenmodes and the stochastic bias formalism. Our results agree well with those published by the 2dFGRS team, and have the added advantage of producing easy-to-interpret uncorrelated minimum-variance measurements of the galaxy-galaxy, galaxy-velocity and velocity-velocity power spectra in 27 k-bands, with narrow and well-behaved window functions in the range 0.01h/Mpc < k < 0.8h/Mpc. We find no significant detection of baryonic wiggles, although our results are consistent with a standard flat Omega_Lambda=0.7 ``concordance'' model and previous tantalizing hints of baryonic oscillations. We measure the galaxy-matter correlation coefficient r > 0.4 and the redshift-distortion parameter beta=0.49+/-0.16 for r=1 (beta=0.47+/- 0.16 without finger-of-god compression). Since this is an apparent-magnitude limited sample, luminosity-dependent bias may cause a slight red-tilt in the power spectum. A battery of systematic error tests indicate that the survey is not only impressive in size, but also unusually clean, free of systematic errors at the level to which our tests are sensitive. Our measurements and window functions are available at http://www.hep.upenn.edu/~max/2df.html together with the survey mask, radial selection function and uniform subsample of the survey that we have constructed.Comment: Replaced to match accepted MNRAS version, with new radial/angular systematics plot and sigma8 typo corrected. High-res figures, power spectra, windows and our uniform galaxy subsample with mask at http://www.hep.upenn.edu/~max/2df.html or from [email protected]. 26 journal pages, 28 fig

    Substrate effects on quasiparticles and excitons in graphene nanoflakes

    Get PDF
    The effects of substrate on electronic and optical properties of triangular and hexagonal graphene nanoflakes with armchair edges are investigated by using a configuration interaction approach beyond double excitation scheme. The quasiparticle correction to the energy gap and exciton binding energy are found to be dominated by the long-range Coulomb interactions and exhibit similar dependence on the dielectric constant of the substrate, which leads to a cancellation of their contributions to the optical gap. As a result, the optical gaps are shown to be insensitive to the dielectric environment and unexpectedly close to the single-particle gaps.Comment: 4 pages, 4 figure
    • …
    corecore