6 research outputs found
Research of the Transmission Accuracy Test Method of Precise Reducer used in Robot
There is no mature test methods of transmission accuracy for precise reducers that are usually used in robot. Based on existing standards and the analysis of applications,the test methods of transmission error,hysteresis error,backlash and torsional stiffness is discussed. The feasible measuring and data processing methods are proposed. A test rig is constructed and three contrast tests are completed for verification of the methods
The microstructure and mechanical properties of Mg-Gd-Y-Zn-Zr system and Mg-Gd-Y-Zr system alloys by RUE deformation
This study investigates the effects of long-period stacking order (LPSO) phases on the dynamic recrystallization (DRX) process. By comparing Mg-Gd-Y-Zn-Zr (GWZ) alloy and Mg-Gd-Y-Zr (GW) alloy deformed by 4 passes of Isothermal Reciprocating Upsetting-Extrusion (RUE), the initial alloy grain sizes are 113.4 μ m and 88.2 μ m, respectively, after 4 passes, the grain size becomes 3.5 μ m and 4.8 μ m, and the grain refinement of GWZ is greater. After 1 pass, the DRX volume fraction of GWZ alloy is 83% and 15%, which is related to the LPSO phases contained in the GWZ alloy. The texture strength of the GWZ alloy ranges from 8.5 of 1 pass to 2.2 of 4 passes, while the GW alloy is from 5.9 of 1 pass to 2.8 of 4 passes, mainly due to the DRX grain volume fraction. The tensile test results at room temperature (RT) showed that the ultimate tensile strength (UTS) and tensile yield strength (TYS) of GWZ alloy are higher than that of GW alloy, and the elongation is lower than that of GW alloy
Effect of annealing temperature and time on recrystallization behavior of Mg-Gd-Y-Zn-Zr alloy
In this paper, the effect of annealing treatment on the microstructure and hardness of extruded Mg-9Gd-4Y-2Zn-0.5Zr alloy (wt. %) was discussed. The microstructure evolution of the alloy under different annealing conditions was studied by optical microscope (OM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD), and the variation of hardness was analyzed. With the increase of annealing temperature, the large deformed grains first break into small recrystallized grains. When the temperature continues to increase, the recrystallized grains grow abnormally with the precipitation of chain phase and the fragmentation of lamellar long-period stacking ordered (LPSO) phase. The alloy does not recrystallize at low temperature, and the recrystallize grains grow abnormally at high temperature. The increase of annealing time will also lead to abnormal growth of recrystallized grains. The texture gradually diffuses from the classical extrusion texture to the extrusion direction (ED). The results show that under the condition of 430 °C × 5 h, the recrystallization volume of the alloy is the largest, the recrystallization grain distribution is uniform, and the hardness value is the highest
Microstructure and Texture Evolution of Mg-Gd-Y-Zr Alloy during Reciprocating Upsetting-Extrusion
Reciprocating Upsetting-Extrusion (RUE) deformation process can significantly refine the grains size and weaken the basal plane texture by applying a large cumulative strain to the alloy, which is of great significance to weaken the anisotropy of magnesium (Mg) alloys and increase the application range. In this paper, the Mg-8.27Gd-3.18Y-0.43Zr (wt %) alloy was subjected to isothermal multi-passes RUE. The microstructure and texture evolution, crystal orientation-dependent deformation mechanism of the alloy after deformation were investigated. The results clearly show that with the increase of RUE process, the grains are significantly refined through continuous dynamic recrystallization (CDRX) and discontinuous dynamic recrystallization (DDRX) mechanisms, the uniformity of the microstructure is improved, and the texture intensity is reduced. At the same time, a large number of particle phases are dynamically precipitated during the deformation process, promoting grain refinement by the particle-stimulated nucleation (PSN) mechanism. The typical [10-10] fiber texture is produced after one pass due to the basal plane of the deformed grains with a relatively high proportion is gradually parallel to the ED during extrusion process. However, the texture concentration is reduced compared with the traditional extrusion deformation, indicating that the upsetting deformation has a certain delay effect on the subsequent extrusion texture generation. After three or four passes deformation, the grain orientation is randomized due to the continuous progress of the dynamic recrystallization process
Grain refinement impact on the mechanical properties and wear behavior of Mg-9Gd-3Y-2Zn-0.5Zr alloy after decreasing temperature reciprocating upsetting-extrusion
Based on the deforming technique of severe plastic deformation (SPD), the grain refinement of a Mg-9Gd-3Y-2Zn-0.5Zr alloy treated with decreasing temperature reciprocating upsetting-extrusion (RUE) and its influence on the mechanical properties and wear behavior of the alloy were studied. The RUE process was carried out for 4 passes in total, starting at 0 °C and decreasing by 10 °C for each pass. The results showed that as the number of RUE passes increased, the grain refinement effect was obvious, and the second phase in the alloy was evenly distributed. Room temperature tensile properties of the alloy and the deepening of the RUE degree showed a positive correlation trend, which was due to the grain refinement, uniform distribution of the second phase and texture weakening. And the microhardness of the alloy showed that the microhardness of RUE is the largest in 2 passes. The change in microhardness was the result of dynamic competition between the softening effect of DRX and the work hardening effect. In addition, the wear resistance of the alloy showed a positive correlation with the degree of RUE under low load conditions. When the applied load was higher, the wear resistance of the alloy treated with RUE decreased compared to the initial state alloy. This phenomenon was mainly due to the presence of oxidative wear on the surface of the alloy, which could balance the positive contribution of severe plastic deformation to wear resistance to a certain extent
Effect of Decreasing Temperature Reciprocating Upsetting-Extrusion on Microstructure and Mechanical Properties of Mg-Gd-Y-Zr Alloy
The decreasing temperature reciprocating upsetting-extrusion (RUE) deformation experiment was carried out on Mg-Gd-Y-Zr alloy to study RUE deformation on the influence of microstructure of the alloy. This work showed that with the gradual increase of RUE deformation passes, the continuous dynamic recrystallization (CDRX) process and the discontinuous dynamic recrystallization (DDRX) process occurred at the same time, and the grain refinement effect was obvious. Particulate precipitation induced the generation of DRX through particle-stimulated nucleation (PSN). In addition, after one pass of RUE deformation, the alloy produced a strong basal texture. As the RUE experiment proceeded, the basal texture intensity decreased. The weakening of the texture was due to the combined effect of DRX and alternating loading forces in the axial and radial directions. After four RUE passes, the mechanical properties of the alloy had been significantly improved, which was the result of the combined effect of dislocation strengthening, fine grain strengthening, and second phase strengthening