248 research outputs found

    Combination of cyclooxygenase-2 inhibitor and doxorubicin increases the growth inhibition and apoptosis in human hepatocellular carcinoma cells

    Full text link
    Inhibition of cyclooxygenase (COX)-2 elicits therapeutic effects in solid tumors that are coupled with the inhibition of cell proliferation and induction of apoptosis in tumor cells. Aim: This study was designed to investigate the role of COX-2 inhibitor nimesulide in cell growth and apoptosis of the cultured human hepatocellular carcinoma HepG2 cells. Methods: We performed the MTT assay, flow cytometric analysis and cell morphology study to evaluate growth inhibition and cell apoptosis upon the action of nimesulide alone or along with doxorubicin, a common agent for the treatment of human hepatocellular carcinoma. Results: Our results showed that the treatment of HepG2 cells with more than 50 Β΅M of nimesulide suppressed COX-2 enzyme activity because of reduced PGE2 production, and then induced growth inhibition and cell apoptosis despite no alterations of COX-2 protein expression. Importantly, the combination of 50 Β΅M or 100 Β΅M of nimesulide and low concentrations (5 Β΅M to 20 Β΅M) of doxorubicin resulted in enhanced cell growth inhibition, apoptosis induction and reduced VEGF production. Conclusion: These data suggest synergistic and/or additive effects of COX-2 inhibitors and chemotherapeutic agents, and may provide the rational for clinical studies of COX-2 inhibitors on the treatment or chemoprevention of human hepatocellular carcinoma.Π£Π³Π½Π΅Ρ‚Π΅Π½ΠΈΠ΅ циклооксигСназы-2 (Π¦ΠžΠ“-2) ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ тСрапСвтичСский эффСкт ΠΏΡ€ΠΈ Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с солидными опухолями ΠΈ сопровоТдаСтся сниТСниСм ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΈ ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠ΅ΠΉ Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Π°. ЦСль: ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Ρ€ΠΎΠ»ΠΈ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Π° Π¦ΠžΠ“-2 β€” нимСсулида Π² процСссах роста ΠΈ Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Π° ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π³Π΅ΠΏΠ°Ρ‚ΠΎΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΡ‹ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° HepG2. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹: для ΠΎΡ†Π΅Π½ΠΊΠΈ Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Π° ΠΈ угнСтСния роста ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΏΡ€ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ нимСсулида ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΈ Π² сочСтании с доксорубицином примСняли MTT-Π°Π½Π°Π»ΠΈΠ·, ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΡƒΡŽ Ρ†ΠΈΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡŽ ΠΈ стандартныС морфологичСскиС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹: установлСно, Ρ‡Ρ‚ΠΎ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΊΠ»Π΅Ρ‚ΠΎΠΊ HepG2 cells нимСсулидом Π² ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ > 50 ΞΌM ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠ»Π° ΠΊ ΡƒΠ³Π½Π΅Ρ‚Π΅Π½ΠΈΡŽ активности Π¦ΠžΠ“-2 Π·Π° счСт сниТСния ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ PGE2 , послС Ρ‡Π΅Π³ΠΎ ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΈ ΠΏΠΎΠ΄Π°Π²Π»Π΅Π½ΠΈΠ΅ роста ΠΈ Π°ΠΏΠΎΠΏΡ‚ΠΎΠ· ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΏΡ€ΠΈ Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π΅Π½Π½ΠΎΠΌ ΡƒΡ€ΠΎΠ²Π½Π΅ экспрСссии Π¦ΠžΠ“-2. ΠšΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ 50 ΞΌM ΠΈΠ»ΠΈ 100 ΞΌM нимСсулида ΠΈ доксорубицина Π² ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ 5–20 ΞΌM обусловило усилСнноС ΡƒΠ³Π½Π΅Ρ‚Π΅Π½ΠΈΠ΅ роста ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Π° ΠΈ сниТСниС ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ VEGF. Π’Ρ‹Π²ΠΎΠ΄Ρ‹: ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎ синСргичСском ΠΈ/ΠΈΠ»ΠΈ Π°Π΄Π΄ΠΈΡ‚ΠΈΠ²Π½ΠΎΠΌ эффСктС ΠΏΡ€ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€ΠΎΠ² Π¦ΠžΠ“-2 ΠΈ химиотСрапСвтичСских ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ²

    Observational Constraints to Ricci Dark Energy Model by Using: SN, BAO, OHD, fgas Data Sets

    Full text link
    In this paper, we perform a global constraint on the Ricci dark energy model with both the flat case and the non-flat case, using the Markov Chain Monte Carlo (MCMC) method and the combined observational data from the cluster X-ray gas mass fraction, Supernovae of type Ia (397), baryon acoustic oscillations, current Cosmic Microwave Background, and the observational Hubble function. In the flat model, we obtain the best fit values of the parameters in 1Οƒ,2Οƒ1\sigma, 2\sigma regions: Ξ©m0=0.2927βˆ’0.0323βˆ’0.0388+0.0420+0.0542\Omega_{m0}=0.2927^{+0.0420 +0.0542}_{-0.0323 -0.0388}, Ξ±=0.3823βˆ’0.0418βˆ’0.0541+0.0331+0.0415\alpha=0.3823^{+0.0331 +0.0415}_{-0.0418 -0.0541}, Age/Gyr=13.48βˆ’0.16βˆ’0.21+0.13+0.17Age/Gyr=13.48^{+0.13 +0.17}_{-0.16 -0.21}, H0=69.09βˆ’2.37βˆ’3.39+2.56+3.09H_0=69.09^{+2.56 +3.09}_{-2.37 -3.39}. In the non-flat model, the best fit parameters are found in 1Οƒ,2Οƒ1\sigma, 2\sigma regions:Ξ©m0=0.3003βˆ’0.0371βˆ’0.0423+0.0367+0.0429\Omega_{m0}=0.3003^{+0.0367 +0.0429}_{-0.0371 -0.0423}, Ξ±=0.3845βˆ’0.0474βˆ’0.0523+0.0386+0.0521\alpha=0.3845^{+0.0386 +0.0521}_{-0.0474 -0.0523}, Ξ©k=0.0240βˆ’0.0130βˆ’0.0153+0.0109+0.0133\Omega_k=0.0240^{+0.0109 +0.0133}_{-0.0130 -0.0153}, Age/Gyr=12.54βˆ’0.37βˆ’0.49+0.51+0.65Age/Gyr=12.54^{+0.51 +0.65}_{-0.37 -0.49}, H0=72.89βˆ’3.05βˆ’3.72+3.31+3.88H_0=72.89^{+3.31 +3.88}_{-3.05 -3.72}. Compared to the constraint results in the Ξ›CDM\Lambda \textmd{CDM} model by using the same datasets, it is shown that the current combined datasets prefer the Ξ›CDM\Lambda \textmd{CDM} model to the Ricci dark energy model.Comment: 12 pages, 3 figure

    Does accelerating universe indicates Brans-Dicke theory

    Full text link
    The evolution of universe in Brans-Dicke (BD) theory is discussed in this paper. Considering a parameterized scenario for BD scalar field Ο•=Ο•0aΞ±\phi=\phi_{0}a^{\alpha} which plays the role of gravitational "constant" GG, we apply the Markov Chain Monte Carlo method to investigate a global constraints on BD theory with a self-interacting potential according to the current observational data: Union2 dataset of type supernovae Ia (SNIa), high-redshift Gamma-Ray Bursts (GRBs) data, observational Hubble data (OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the cosmic microwave background (CMB) data. It is shown that an expanded universe from deceleration to acceleration is given in this theory, and the constraint results of dimensionless matter density Ξ©0m\Omega_{0m} and parameter Ξ±\alpha are, Ξ©0m=0.286βˆ’0.039βˆ’0.047+0.037+0.050\Omega_{0m}=0.286^{+0.037+0.050}_{-0.039-0.047} and Ξ±=0.0046βˆ’0.0171βˆ’0.0206+0.0149+0.0171\alpha=0.0046^{+0.0149+0.0171}_{-0.0171-0.0206} which is consistent with the result of current experiment exploration, βˆ£Ξ±βˆ£β‰€0.132124\mid\alpha\mid \leq 0.132124. In addition, we use the geometrical diagnostic method, jerk parameter jj, to distinguish the BD theory and cosmological constant model in Einstein's theory of general relativity.Comment: 16 pages, 3 figure

    Cosmological constraints on the generalized holographic dark energy

    Full text link
    We use the Markov ChainMonte Carlo method to investigate global constraints on the generalized holographic (GH) dark energy with flat and non-flat universe from the current observed data: the Union2 dataset of type supernovae Ia (SNIa), high-redshift Gamma-Ray Bursts (GRBs), the observational Hubble data (OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the cosmic microwave background (CMB) data. The most stringent constraints on the GH model parameter are obtained. In addition, it is found that the equation of state for this generalized holographic dark energy can cross over the phantom boundary wde =-1.Comment: 14 pages, 5 figures. arXiv admin note: significant text overlap with arXiv:1105.186

    Current-Density Functional Theory of the Response of Solids

    Full text link
    The response of an extended periodic system to a homogeneous field (of wave-vector q=0q=0) cannot be obtained from a q=0q=0 time-dependent density functional theory (TDDFT) calculation, because the Runge-Gross theorem does not apply. Time-dependent {\em current}-density functional theory is needed and demonstrates that one key ingredient missing from TDDFT is the macroscopic current. In the low-frequency limit, in certain cases, density polarization functional theory is recovered and a formally exact expression for the polarization functional is given.Comment: 5 pages, accepted in PR

    Constraints on accelerating universe using ESSENCE and Gold supernovae data combined with other cosmological probes

    Full text link
    We use recently observed data: the 192 ESSENCE type Ia supernovae (SNe Ia), the 182 Gold SNe Ia, the 3-year WMAP, the SDSS baryon acoustic peak, the X-ray gas mass fraction in clusters and the observational H(z)H(z) data to constrain models of the accelerating universe. Combining the 192 ESSENCE data with the observational H(z)H(z) data to constrain a parameterized deceleration parameter, we obtain the best fit values of transition redshift and current deceleration parameter zT=0.632βˆ’0.127+0.256z_{T}=0.632^{+0.256}_{-0.127}, q0=βˆ’0.788βˆ’0.182+0.182q_{0}=-0.788^{+0.182}_{-0.182}. Furthermore, using Ξ›\LambdaCDM model and two model-independent equation of state of dark energy, we find that the combined constraint from the 192 ESSENCE data and other four cosmological observations gives smaller values of Ξ©0m\Omega_{0m} and q0q_{0}, but a larger value of zTz_{T} than the combined constraint from the 182 Gold data with other four observations. Finally, according to the Akaike information criterion it is shown that the recently observed data equally supports three dark energy models: Ξ›\LambdaCDM, wde(z)=w0w_{de}(z)=w_{0} and wde(z)=w0+w1ln⁑(1+z)w_{de}(z)=w_{0}+w_{1}\ln(1+z).Comment: 18 pages, 8 figure

    Observational constraint on generalized Chaplygin gas model

    Get PDF
    We investigate observational constraints on the generalized Chaplygin gas (GCG) model as the unification of dark matter and dark energy from the latest observational data: the Union SNe Ia data, the observational Hubble data, the SDSS baryon acoustic peak and the five-year WMAP shift parameter. It is obtained that the best fit values of the GCG model parameters with their confidence level are As=0.73βˆ’0.06+0.06A_{s}=0.73^{+0.06}_{-0.06} (1Οƒ1\sigma) βˆ’0.09+0.09^{+0.09}_{-0.09} (2Οƒ)(2\sigma), Ξ±=βˆ’0.09βˆ’0.12+0.15\alpha=-0.09^{+0.15}_{-0.12} (1Οƒ1\sigma) βˆ’0.19+0.26^{+0.26}_{-0.19} (2Οƒ)(2\sigma). Furthermore in this model, we can see that the evolution of equation of state (EOS) for dark energy is similar to quiessence, and its current best-fit value is w0de=βˆ’0.96w_{0de}=-0.96 with the 1Οƒ1\sigma confidence level βˆ’0.91β‰₯w0deβ‰₯βˆ’1.00-0.91\geq w_{0de}\geq-1.00.Comment: 9 pages, 5 figure

    Combined constraints on modified Chaplygin gas model from cosmological observed data: Markov Chain Monte Carlo approach

    Full text link
    We use the Markov Chain Monte Carlo method to investigate a global constraints on the modified Chaplygin gas (MCG) model as the unification of dark matter and dark energy from the latest observational data: the Union2 dataset of type supernovae Ia (SNIa), the observational Hubble data (OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the cosmic microwave background (CMB) data. In a flat universe, the constraint results for MCG model are, Ξ©bh2=0.02263βˆ’0.00162+0.00184\Omega_{b}h^{2}=0.02263^{+0.00184}_{-0.00162} (1Οƒ1\sigma) βˆ’0.00195+0.00213^{+0.00213}_{-0.00195} (2Οƒ)(2\sigma), Bs=0.7788βˆ’0.0723+0.0736B_{s}=0.7788^{+0.0736}_{-0.0723} (1Οƒ1\sigma) βˆ’0.0904+0.0918^{+0.0918}_{-0.0904} (2Οƒ)(2\sigma), Ξ±=0.1079βˆ’0.2539+0.3397\alpha=0.1079^{+0.3397}_{-0.2539} (1Οƒ1\sigma) βˆ’0.2911+0.4678^{+0.4678}_{-0.2911} (2Οƒ)(2\sigma), B=0.00189βˆ’0.00756+0.00583B=0.00189^{+0.00583}_{-0.00756} (1Οƒ1\sigma) βˆ’0.00915+0.00660^{+0.00660}_{-0.00915} (2Οƒ)(2\sigma), and H0=70.711βˆ’3.142+4.188H_{0}=70.711^{+4.188}_{-3.142} (1Οƒ1\sigma) βˆ’4.149+5.281^{+5.281}_{-4.149} (2Οƒ)(2\sigma).Comment: 12 pages, 1figur

    Doping-insensitive density-of-states suppression in polycrystalline iron-based superconductor SmO1βˆ’x_{1-x}Fx_{x}FeAs

    Full text link
    We investigated the temperature dependence of the density-of-states in the iron-based superconductor SmO_1-xF_xFeAs (x=0, 0.12, 0.15, 0.2) with high resolution angle-integrated photoemission spectroscopy. The density-of-states suppression is observed with decreasing temperature in all samples, revealing two characteristic energy scales (10meV and 80meV). However, no obvious doping dependence is observed. We argue that the 10meV suppression is due to an anomalously doping-independent normal state pseudogap, which becomes the superconducting gap once in the superconducting state; and alert the possibility that the 80meV-scale suppression might be an artifact of the polycrystalline samples.Comment: 4 pages, 4 figure
    • …
    corecore